DEPTH ESTIMATION FROM MONOCULAR IMAGES AND SPARSE RADAR USING DEEP ORDINAL REGRESSION NETWORK

被引:11
|
作者
Lo, Chen-Chou [1 ]
Vandewalle, Patrick [1 ]
机构
[1] Katholieke Univ Leuven, EAVISE, PSI, Dept Elect Engn ESAT, Jan de Nayerlaan 5, B-2860 St Katelijne Waver, Belgium
关键词
monocular depth estimation; radar; ordinal regression network; nuScenes;
D O I
10.1109/ICIP42928.2021.9506550
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We integrate sparse radar data into a monocular depth estimation model and introduce a novel preprocessing method for reducing the sparseness and limited field of view provided by radar. We explore the intrinsic error of different radar modalities and show our proposed method results in more data points with reduced error. We further propose a novel method for estimating dense depth maps from monocular 2D images and sparse radar measurements using deep learning based on the deep ordinal regression network by Fu et al. Radar data are integrated by first converting the sparse 2D points to a height-extended 3D measurement and then including it into the network using a late fusion approach. Experiments are conducted on the nuScenes dataset. Our experiments demonstrate state-of-the-art performance in both day and night scenes.
引用
收藏
页码:3343 / 3347
页数:5
相关论文
共 50 条
  • [1] Deep Ordinal Regression Network for Monocular Depth Estimation
    Fu, Huan
    Gong, Mingming
    Wang, Chaohui
    Batmanghelich, Kayhan
    Tao, Dacheng
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2002 - 2011
  • [2] Depth Estimation from Monocular Images and Sparse Radar Data
    Lin, Juan-Ting
    Dai, Dengxin
    Van Gool, Luc
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10233 - 10240
  • [3] Depth estimation from single monocular images using deep hybrid network
    Grigorev, Aleksei
    Jiang, Feng
    Rho, Seungmin
    Sori, Worku J.
    Liu, Shaohui
    Sai, Sergey
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (18) : 18585 - 18604
  • [4] Depth estimation from single monocular images using deep hybrid network
    Aleksei Grigorev
    Feng Jiang
    Seungmin Rho
    Worku J. Sori
    Shaohui Liu
    Sergey Sai
    [J]. Multimedia Tools and Applications, 2017, 76 : 18585 - 18604
  • [5] Height Estimation From Single Aerial Images Using a Deep Ordinal Regression Network
    Li, Xiang
    Wang, Mingyang
    Fang, Yi
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [6] CORNet: Context-Based Ordinal Regression Network for Monocular Depth Estimation
    Meng, Xuyang
    Fan, Chunxiao
    Ming, Yue
    Yu, Hui
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (07) : 4841 - 4853
  • [7] Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs
    Li, Bo
    Shen, Chunhua
    Dai, Yuchao
    van den Hengel, Anton
    He, Mingyi
    [J]. 2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 1119 - 1127
  • [8] High resolution depth reconstruction from monocular images and sparse point clouds using deep convolutional neural network
    Dimitrievski, Martin
    Goossens, Bart
    Veelaert, Peter
    Philips, Wilfried
    [J]. UNCONVENTIONAL AND INDIRECT IMAGING, IMAGE RECONSTRUCTION, AND WAVEFRONT SENSING 2017, 2017, 10410
  • [9] Monocular Depth Estimation via Deep Structured Models with Ordinal Constraints
    Ron, Daniel
    Duan, Kun
    Ma, Chongyang
    Xu, Ning
    Wang, Shenlong
    Hanumante, Sumant
    Sagar, Dhritiman
    [J]. 2018 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2018, : 570 - 577
  • [10] Monocular Depth Estimation With Augmented Ordinal Depth Relationships
    Cao, Yuanzhouhan
    Zhao, Tianqi
    Xian, Ke
    Shen, Chunhua
    Cao, Zhiguo
    Xu, Shugong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (08) : 2674 - 2682