Uniformly packed codes and more distance regular graphs from crooked functions

被引:14
|
作者
Van Dam, ER
Fon-Der-Flaass, D
机构
[1] Tilburg Univ, Dept Econ, NL-5000 LE Tilburg, Netherlands
[2] Russian Acad Sci, Inst Math, Novosibirsk 630090, Russia
关键词
crooked function; distance-regular graph; association scheme; uniformly packed code;
D O I
10.1023/A:1026583725202
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V and W be n-dimensional vector spaces over GF(2). A function Q : V --> W is called crooked (a notion introduced by Bending and Fon-Der-Flaass) if it satisfies the following three properties: Q(0)=0; Q(x)+Q(y)+Q(z)+Q(x+y+z) not equal 0 for any three distinct x,y,z; Q(x)+Q(y)+Q(z)+Q(x+a)+Q(y+a)+Q(z+a)not equal0 if a not equal 0 (x,y,z arbibrary). We show that crooked functions can be used to construct distance regular graphs with parameters of a Kasami distance regular graph, symmetric 5-class association schemes similar to those recently constructed by de Caen and van Dam from Kasami graphs, and uniformly packed codes with the same parameters as the double error-correcting BCH codes and Preparata codes.
引用
收藏
页码:115 / 121
页数:7
相关论文
共 50 条