Hamiltonian decomposition of generalized recursive circulant graphs

被引:2
|
作者
Chen, Y-Chuang [1 ]
Tsai, Tsung-Han [2 ]
机构
[1] Minghsin Univ Sci & Technol, Dept Informat Management, Hsinchu 30401, Taiwan
[2] Natl Chiao Tung Univ, Dept Comp Sci, Hsinchu 300, Taiwan
关键词
Fault tolerance; Hamiltonian decomposition; Circulant graph; Recursive circulant graph; Generalized recursive circulant graph;
D O I
10.1016/j.ipl.2016.04.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In 2012, Tang et al. [9] proposed a new class of graphs called generalized recursive circulant (GRC) graphs, which is an extension of recursive circulant graphs. GRC graphs have a more flexible structure than recursive circulant graphs, while retaining their attractive properties, such as degree, connectivity, diameter, and routing algorithm. In this paper, the Hamiltonian decomposition of some GRC graphs is discussed. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:585 / 589
页数:5
相关论文
共 50 条
  • [1] Hamiltonian decomposition of recursive circulant graphs
    Biss, DK
    DISCRETE MATHEMATICS, 2000, 214 (1-3) : 89 - 99
  • [2] Routing in recursive circulant graphs: Edge forwarding index and Hamiltonian decomposition
    Gauyacq, G
    Micheneau, C
    Raspaud, A
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 1998, 1517 : 227 - 241
  • [3] Generalized Recursive Circulant Graphs
    Tang, Shyue-Ming
    Wang, Yue-Li
    Li, Chien-Yi
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012, 23 (01) : 87 - 93
  • [4] Disjoint Hamiltonian cycles in recursive circulant graphs
    Micheneau, C
    INFORMATION PROCESSING LETTERS, 1997, 61 (05) : 259 - 264
  • [5] Cycle Embedding in Generalized Recursive Circulant Graphs
    Tang, Shyue-Ming
    Wang, Yue-Li
    Li, Chien-Yi
    Chang, Jou-Ming
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (12): : 2916 - 2921
  • [6] Constructing Independent Spanning Trees on Generalized Recursive Circulant Graphs
    Cheng, Dun-Wei
    Yao, Kai-Hsun
    Hsieh, Sun-Yuan
    IEEE ACCESS, 2021, 9 : 74028 - 74037
  • [7] Pancyclicity of recursive circulant graphs
    Araki, T
    Shibata, Y
    INFORMATION PROCESSING LETTERS, 2002, 84 (03) : 173 - 173
  • [8] Pancyclicity of recursive circulant graphs
    Araki, T
    Shibata, Y
    INFORMATION PROCESSING LETTERS, 2002, 81 (04) : 187 - 190
  • [9] Optimal layout of recursive circulant graphs
    Stalin Mary, R.
    Parthiban, N.
    Rajasingh, Indra
    Manuel, Paul
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS- COMPUTER SYSTEMS THEORY, 2021, 6 (03) : 209 - 219
  • [10] Enforced hamiltonian cycles in circulant graphs
    Timkova, Maria
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2018, 70 : 269 - 278