Harmonic means of Wishart random matrices

被引:2
|
作者
Lodhia, Asad [1 ]
机构
[1] Univ Michigan, Dept Stat, 256 West Hall,1085 South Univ Ave, Ann Arbor, MI 48109 USA
关键词
Free probability; random matrices; covariance estimation; EIGENVALUE;
D O I
10.1142/S2010326321500167
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use free probability to compute the limiting spectral properties of the harmonic mean of n i.i.d. Wishart random matrices W-i whose limiting aspect ratio is gamma is an element of (0, 1) when E[W-i] = I. We demonstrate an interesting phenomenon where the harmonic mean H of the n Wishart matrices is closer in operator norm to E[W-i] than the arithmetic mean A for small n, after which the arithmetic mean is closer. We also prove some results for the general case where the expectation of the Wishart matrices are not the identity matrix.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Wishart and anti-Wishart random matrices
    Janik, RA
    Nowak, MA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3629 - 3637
  • [2] On Hadamard powers of random Wishart matrices
    Baslingker, Jnaneshwar
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2023, 28
  • [3] Freeness and The Partial Transposes of Wishart Random Matrices
    Mingo, James A.
    Popa, Mihai
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2019, 71 (03): : 659 - 681
  • [4] INDEPENDENCE CHARACTERIZATION FOR WISHART AND KUMMER RANDOM MATRICES
    Kolodziejek, Bartosz
    Piliszek, Agnieszka
    [J]. REVSTAT-STATISTICAL JOURNAL, 2020, 18 (03) : 357 - 373
  • [5] Wishart Random Matrices in Probabilistic Structural Mechanics
    Adhikari, Sondipon
    [J]. JOURNAL OF ENGINEERING MECHANICS, 2008, 134 (12) : 1029 - 1044
  • [6] Nonintersecting Brownian interfaces and Wishart random matrices
    Nadal, Celine
    Majumdar, Satya N.
    [J]. PHYSICAL REVIEW E, 2009, 79 (06):
  • [7] Large deviations of the maximum eigenvalue in Wishart random matrices
    Vivo, Pierpaolo
    Majumdar, Satya N.
    Bohigas, Oriol
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (16) : 4317 - 4337
  • [8] Eigenvalue density of correlated complex random Wishart matrices
    Simon, SH
    Moustakas, AL
    [J]. PHYSICAL REVIEW E, 2004, 69 (06):
  • [9] ASYMPTOTIC DISTRIBUTIONS OF WISHART TYPE PRODUCTS OF RANDOM MATRICES
    Lenczewski, Romuald
    Salapata, Rafal
    [J]. COLLOQUIUM MATHEMATICUM, 2019, 155 (01) : 67 - 106
  • [10] Non-Hermitean Wishart random matrices (I)
    Kanzieper, Eugene
    Singh, Navinder
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)