Temperature-driven crossover in the Lieb-Liniger model

被引:10
|
作者
Kluemper, Andreas [1 ]
Patu, Ovidiu I. [2 ]
机构
[1] Berg Univ Wuppertal, Fachbereich Phys C, D-42097 Wuppertal, Germany
[2] Inst Space Sci, R-077125 Bucharest, Romania
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 05期
关键词
DIMENSIONAL QUANTUM FLUIDS; TONKS-GIRARDEAU GAS; BOSE-GAS; SCHRODINGER MODEL; BOSONS;
D O I
10.1103/PhysRevA.90.053626
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The large-distance behavior of the density-density correlation function in the Lieb-Liniger model at finite temperature is investigated by means of the recently derived nonlinear integral equations characterizing the correlation lengths. We present extensive numerical results covering all the physical regimes from weak to strong interaction and all temperatures. We find that the leading term of the asymptotic expansion becomes oscillatory at a critical temperature which decreases with the strength of the interaction. As we approach the Tonks-Girardeau limit the asymptotic behavior becomes more complex with a double crossover of the largest and next-largest correlation lengths. The crossovers exist only for intermediate couplings and vanish for gamma = 0 and infinity.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A generalized Lieb-Liniger model
    Veksler, Hagar
    Fishman, Shmuel
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (08)
  • [2] Quantum holonomy in the Lieb-Liniger model
    Yonezawa, Nobuhiro
    Tanaka, Atushi
    Cheon, Taksu
    PHYSICAL REVIEW A, 2013, 87 (06)
  • [3] Excitation Spectrum of the Lieb-Liniger Model
    Ristivojevic, Zoran
    PHYSICAL REVIEW LETTERS, 2014, 113 (01)
  • [4] Spectrum statistics in the integrable Lieb-Liniger model
    Mailoud, Samy
    Borgonovi, Fausto
    Izrailev, Felix M.
    PHYSICAL REVIEW E, 2021, 104 (03)
  • [5] Dynamics of Lieb-Liniger gases
    Girardeau, MD
    PHYSICAL REVIEW LETTERS, 2003, 91 (04)
  • [6] Classical and quantum metrology of the Lieb-Liniger model
    Baak, Jae-Gyun
    Fischer, Uwe R.
    PHYSICAL REVIEW A, 2022, 106 (06)
  • [7] Solutions of the Lieb-Liniger integral equation
    Wadati, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (11) : 2657 - 2662
  • [8] The Lieb-Liniger model in the infinite coupling constant limit
    Ouvry, Stephane
    Polychronakos, Alexios P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (27)
  • [9] THE MEAN-FIELD LIMIT OF THE LIEB-LINIGER MODEL
    Rosenzweig, Matthew
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (06) : 3005 - 3037
  • [10] Exact results of dynamical structure factor of Lieb-Liniger model
    Li, Run-Tian
    Cheng, Song
    Chen, Yang-Yang
    Guan, Xi-Wen
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (33)