An uncountable set of tiling spaces with distinct cohomology

被引:6
|
作者
Rust, Dan [1 ]
机构
[1] Univ Leicester, Leicester LE1 7RH, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
Cohomology; Tiling spaces; Substitution; SHAPE;
D O I
10.1016/j.topol.2016.01.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalise the notion of a Barge-Diamond complex, in the one-dimensional case, to any mixed system of tiling substitutions. This gives a way of describing the associated tiling space as an inverse limit of Barge-Diamond complexes. We give an effective method for calculating the tech cohomology of the tiling space via an exact sequence relating the associated sequence of substitution matrices and certain subcomplexes appearing in the approximants. As an application, we show that there exists a system of three substitutions on two letters which exhibit an uncountable collection of minimal tiling spaces with distinct isomorphism classes of Cech cohomology. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 81
页数:24
相关论文
共 50 条
  • [1] Quotient cohomology for tiling spaces
    Barge, Marcy
    Sadun, Lorenzo
    NEW YORK JOURNAL OF MATHEMATICS, 2011, 17 : 579 - 599
  • [2] Cohomology of substitution tiling spaces
    Barge, Marcy
    Diamond, Beverly
    Hunton, John
    Sadun, Lorenzo
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2010, 30 : 1607 - 1627
  • [3] Cohomology of rotational tiling spaces
    Walton, James J.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2017, 49 (06) : 1013 - 1027
  • [4] Tiling Deformations, Cohomology, and Orbit Equivalence of Tiling Spaces
    Antoine Julien
    Lorenzo Sadun
    Annales Henri Poincaré, 2018, 19 : 3053 - 3088
  • [5] Tiling Deformations, Cohomology, and Orbit Equivalence of Tiling Spaces
    Julien, Antoine
    Sadun, Lorenzo
    ANNALES HENRI POINCARE, 2018, 19 (10): : 3053 - 3088
  • [6] Exact regularity and the cohomology of tiling spaces
    Sadun, Lorenzo
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2011, 31 : 1819 - 1834
  • [7] Maximal equicontinuous factors and cohomology for tiling spaces
    Barge, Marcy
    Kellendonk, Johannes
    Schmieding, Scott
    FUNDAMENTA MATHEMATICAE, 2012, 218 (03) : 243 - 267
  • [8] Cohomology in one-dimensional substitution tiling spaces
    Barge, Marcy
    Diamond, Beverly
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) : 2183 - 2191
  • [9] Cohomology of one-dimensional mixed substitution tiling spaces
    Gaehler, Franz
    Maloney, Gregory R.
    TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (05) : 703 - 719
  • [10] Tiling spaces are Cantor set fiber bundles
    Sadun, L
    Williams, RF
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 : 307 - 316