Calcium-magnesium-alumina-silicate (CMAS) resistance property of BaLn2Ti3O10 (Ln=La, Nd) for thermal barrier coating applications

被引:29
|
作者
Guo, Lei [1 ,3 ]
Li, Mingzhu [1 ,2 ]
Yang, Chenxi [1 ,2 ]
Zhang, Chenglong [1 ,2 ]
Xu, Luming [1 ,2 ]
Ye, Fuxing [1 ,2 ,3 ]
Dan, Chengyi [4 ]
Ji, Vincent [4 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin, Peoples R China
[2] Tianjin Univ, Tianjin Key Lab Adv Joining Technol, Tianjin, Peoples R China
[3] Tianjin Univ, Minist Educ, Key Lab Adv Ceram & Machining Technol, 92 Weijin Rd, Tianjin 300072, Peoples R China
[4] Univ Paris 11, ICMMO, SP2M, UMR CNRS 8182, F-91405 Orsay, France
基金
中国国家自然科学基金;
关键词
BaLn(2)Ti(3)O(10); Thermal barrier coatings (TBCs); Calcium-magnesium-alumina-silicate (CMAS); Crystallization; HIGH-TEMPERATURE ATTACK; GLASSY DEPOSITS; PHYSICAL PROPERTIES; MOLTEN CMAS; AIR; CERAMICS; MICROSTRUCTURE; CORROSION; SM; INFILTRATION;
D O I
10.1016/j.ceramint.2017.05.107
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Calcium-magnesium-alumina-silicate (CMAS) has posed enormous threat to thermal barrier coatings (TBCs). In this study, a series of newly developed TBC ceramics, BaLn(2)Ti(3)O(10) (Ln=La, Nd), are found to have high resistance to the penetration of molten CMAS at 1250 degrees C. The formation of a continuous, dense crystalline layer, mainly composed of apatite and CaTiO3 phases, on the sample surfaces contributed to this desirable attribute. The accumulation of Ba in the molten CMAS triggered the crystallization of the melt, leading to the formation of many BaAl2Si2O8 celsian crystals above the crystalline layer, which could reduce the mobility of the molten CMAS. The mechanisms by which the CMAS attacks BaLn(2)Ti(3)O(10) samples are discussed. The results indicate that Ba is an effective element for altering CMAS composition, and doping Ba in TBCs might be an attractive way of mitigating CMAS attack.
引用
收藏
页码:10521 / 10527
页数:7
相关论文
共 50 条
  • [1] Calcium-magnesium-alumina-silicate (CMAS) resistance characteristics of LnPO4 (Ln = Nd, Sm, Gd) thermal barrier oxides
    Wang, Feng
    Guo, Lei
    Wang, Caimei
    Ye, Fuxing
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37 (01) : 289 - 296
  • [2] Thermal properties and Calcium-Magnesium-Alumina-Silicate (CMAS) resistance of LuPO4 as environmental barrier coatings
    Hu, Xunxun
    Xu, Fangfang
    Li, Kunwei
    Zhang, Yizhou
    Xu, Yue
    Zhao, Xinqing
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (04) : 1471 - 1477
  • [3] Preparation of nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings and their calcium-magnesium-alumina-silicate (CMAS) resistance
    Li, Mingzhu
    Cheng, Yuxian
    Guo, Lei
    Zhang, Yuchen
    Zhang, Chenglong
    He, Sixian
    Sun, Wei
    Ye, Fuxing
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37 (10) : 3425 - 3434
  • [4] Calcium-magnesium-alumina-silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings
    Chen, X
    SURFACE & COATINGS TECHNOLOGY, 2006, 200 (11): : 3418 - 3427
  • [5] Corrosion resistance and thermal-mechanical properties of ceramic pellets to molten calcium-magnesium-alumina-silicate (CMAS)
    Fang, Huanjie
    Wang, Weize
    Huang, Jibo
    Ye, Dongdong
    CERAMICS INTERNATIONAL, 2019, 45 (16) : 19710 - 19719
  • [6] Interactions Between Sc2O3 Ceramics and Calcium-Magnesium-Alumina-Silicate (CMAS) at Elevated Temperature
    Mo, Zupeng
    Mo, Zijian
    Yu, Zhiyun
    Cheng, Yifan
    Miao, Yiling
    Liang, Tianquan
    CRYSTALS, 2025, 15 (02)
  • [7] Phase stability, microstructural and thermo-physical properties of BaLn2Ti3O10 (Ln=Nd and Sm) ceramics
    Guo, Lei
    Guo, Hongbo
    Ma, Guohui
    Gong, Shengkai
    Xu, Huibin
    CERAMICS INTERNATIONAL, 2013, 39 (06) : 6743 - 6749
  • [8] Calcium-magnesium-alumina-silicate (CMAS) corrosion behavior of A6B2O17 (A=Zr, Hf; B=Nb, Ta) as potential candidate for thermal barrier coating (TBC)
    Li, Hao
    Yu, Yiping
    Fang, Bing
    Xiao, Peng
    Li, Wei
    Wang, Song
    CORROSION SCIENCE, 2022, 204
  • [9] Calcium-magnesium-alumina-silicate (CMAS) corrosion behavior of A6B2O17 (A=Zr, Hf; B=Nb, Ta) as potential candidate for thermal barrier coating (TBC)
    Li, Hao
    Yu, Yiping
    Fang, Bing
    Xiao, Peng
    Li, Wei
    Wang, Song
    Corrosion Science, 2022, 204
  • [10] Evaluation of a sealed layer on a porous thermal barrier coating against molten calcium-magnesium-alumina-silicate corrosion
    Cui, Shiyu
    Huang, Jun
    Luo, Junming
    Liang, Wenping
    Saucedo-Mora, Luis
    Tao, Xiaoma
    MATERIALS & DESIGN, 2021, 208