Let k be a commutative ring, G a finite group, R and S fully G-graded k-algebras. In this paper we investigate Morita equivalences, derived equivalences and stable equivalences of Morita type between R and S, which are induced by G-graded R, S-bimodules or complexes of G-graded bimodules. Such equivalences occur naturally in the case of group algebras in certain reduction steps for Broue's conjecture, and we show how they can be lifted from equivalences between R-1 and S-1.