Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks

被引:0
|
作者
Antony, Joseph [1 ]
McGuinness, Kevin [1 ]
O'Connor, Noel E. [1 ]
Moran, Kieran [1 ,2 ]
机构
[1] Dublin City Univ, Insight Ctr Data Analyt, Dublin, Ireland
[2] Dublin City Univ, Sch Hlth & Human Performance, Dublin, Ireland
基金
美国国家卫生研究院; 爱尔兰科学基金会;
关键词
Knee osteoarthritis; KL grades; Convolutional neural network; classification; regression; wndchrm;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new approach to automatically quantify the severity of knee osteoarthritis (OA) from radiographs using deep convolutional neural networks (CNN). Clinically, knee OA severity is assessed using Kellgren & Lawrence (KL) grades, a five point scale. Previous work on automatically predicting KL grades from radiograph images were based on training shallow classifiers using a variety of hand engineered features. We demonstrate that classification accuracy can be significantly improved using deep convolutional neural network models pre-trained on ImageNet and fine-tuned on knee OA images. Furthermore, we argue that it is more appropriate to assess the accuracy of automatic knee OA severity predictions using a continuous distance-based evaluation metric like mean squared error than it is to use classification accuracy. This leads to the formulation of the prediction of KL grades as a regression problem and further improves accuracy. Results on a dataset of X-ray images and KL grades from the Osteoarthritis Initiative (OAI) show a sizable improvement over the current state-of-the-art.
引用
收藏
页码:1195 / 1200
页数:6
相关论文
共 50 条
  • [1] Automated Classification of Radiographic Knee Osteoarthritis Severity Using Deep Neural Networks
    Thomas, Kevin A.
    Kidzinski, Lukasz
    Halilaj, Eni
    Fleming, Scott L.
    Venkataraman, Guhan R.
    Oei, Edwin H. G.
    Gold, Garry E.
    Delp, Scott L.
    [J]. RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (02)
  • [2] AUTOMATED STAGING OF KNEE OSTEOARTHRITIS SEVERITY USING DEEP NEURAL NETWORKS
    Suresha, S.
    Kidzinski, L.
    Halilaj, E.
    Gold, G. E.
    Delp, S. L.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2018, 26 : S441 - S441
  • [3] AUTOMATIC COMPUTATION OF KNEE OSTEOARTHRITIS SEVERITY USING KNEE X-RAYS AND CONVOLUTIONAL NEURAL NETWORKS
    Selmi, T. Ait Si
    Muller-Fouarge, F.
    Estienne, T.
    Bekadar, S.
    Carrillon, Y.
    Pouchy, C.
    Bonnin, M.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2023, 82 : 753 - 753
  • [4] Grading of Knee Osteoarthritis Using Convolutional Neural Networks
    D. R. Sarvamangala
    Raghavendra V. Kulkarni
    [J]. Neural Processing Letters, 2021, 53 : 2985 - 3009
  • [5] Grading of Knee Osteoarthritis Using Convolutional Neural Networks
    Sarvamangala, D. R.
    Kulkarni, Raghavendra V.
    [J]. NEURAL PROCESSING LETTERS, 2021, 53 (04) : 2985 - 3009
  • [6] Knee osteoarthritis severity prediction using an attentive multi-scale deep convolutional neural network
    Jain, Rohit Kumar
    Sharma, Prasen Kumar
    Gaj, Sibaji
    Sur, Arijit
    Ghosh, Palash
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 6925 - 6942
  • [7] Knee osteoarthritis severity prediction using an attentive multi-scale deep convolutional neural network
    Rohit Kumar Jain
    Prasen Kumar Sharma
    Sibaji Gaj
    Arijit Sur
    Palash Ghosh
    [J]. Multimedia Tools and Applications, 2024, 83 : 6925 - 6942
  • [8] AUTOMATIC GRADING OF INDIVIDUAL KNEE OSTEOARTHRITIS FEATURES IN PLAIN RADIOGRAPHS USING DEEP CONVOLUTIONAL NEURAL NETWORKS
    Tiulpin, A.
    Saarakkala, S.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2020, 28 : S308 - S308
  • [9] Automatic Grading of Individual Knee Osteoarthritis Features in Plain Radiographs Using Deep Convolutional Neural Networks
    Tiulpin, Aleksei
    Saarakkala, Simo
    [J]. DIAGNOSTICS, 2020, 10 (11)
  • [10] Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss
    Chen, Pingjun
    Gao, Linlin
    Shi, Xiaoshuang
    Allen, Kyle
    Yang, Lin
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 75 : 84 - 92