Interactive Medical Image Segmentation by Statistical Seed Models

被引:0
|
作者
Spina, Thiago Vallin [1 ]
Martins, Samuel Botter [1 ]
Falcao, Alexandre Xavier [1 ]
机构
[1] Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Interactive Medical Image Segmentation; Object Models; Robot Users; Segmentation Resuming; ALGORITHMS; BRAIN; GRAPH;
D O I
10.1109/SIBGRAPI.2016.42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Interactive 3D object segmentation is an important and challenging activity in medical imaging, although it is tedious and error-prone to be done. Automatic segmentation methods aim to replace the user altogether, but require user interaction to produce training data sets of segmented masks and to make error corrections. We propose a complete framework for interactive medical image segmentation, which reduces user effort by automatically providing an initial segmentation result. We develop a Statistical Seed Model (SSM) to this end, that improves from seed sets selected by robot users when reconstructing masks of previously segmented images. The SSM outputs a seed set that may be used to automatically delineate a new test image. The seeds provide both an implicit object shape constraint and a flexible way of interactively correcting segmentation. We demonstrate that our framework decreases the amount of user interaction by a factor of three, when segmenting MR-images of the cerebellum.
引用
收藏
页码:273 / 280
页数:8
相关论文
共 50 条
  • [1] An Interactive Segmentation of Medical Image Series
    Wu Bingrong
    Xie Mei
    [J]. FBIE: 2008 INTERNATIONAL SEMINAR ON FUTURE BIOMEDICAL INFORMATION ENGINEERING, PROCEEDINGS, 2008, : 7 - 10
  • [2] Interactive Medical Image Segmentation with Seed Precomputation System: Data from the Osteoarthritis Initiative
    Gan, Hong-Seng
    Tan, Tian-Swee
    Karim, Ahmad Helmy Abdul
    Sayuti, Khairil Amir
    Kadir, Mohammed Rafiq Abdul
    [J]. 2014 IEEE CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2014, : 315 - 318
  • [3] An interactive statistical image segmentation and visualization system
    Kapelner, Adam
    Lee, Peter R.
    Holmes, Susan
    [J]. MEDIVIZ 2007: 4TH INTERNATIONAL CONFERENCE MEDICAL INFORMATION VISUALISATION - BIOMEDICAL VISUALISATION, PROCEEDINGS, 2007, : 81 - +
  • [4] SEED GROWING FOR INTERACTIVE IMAGE SEGMENTATION WITH GEODESIC VOTING
    Park, Sunjeong
    Lee, Han S.
    Kim, Junmo
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 2564 - 2568
  • [5] Interactive medical image segmentation with United Snakes
    Liang, JM
    McInerney, T
    Terzopoulos, D
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI'99, PROCEEDINGS, 1999, 1679 : 116 - 127
  • [6] PIMedSeg: Progressive interactive medical image segmentation
    Gong, Xun
    Wang, Li
    Miao, Longlong
    Chen, Nuo
    Li, Jiao
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 241
  • [7] Opening up the “black box” of medical image segmentation with statistical shape models
    Tatiana von Landesberger
    Gennady Andrienko
    Natalia Andrienko
    Sebastian Bremm
    Matthias Kirschner
    Stefan Wesarg
    Arjan Kuijper
    [J]. The Visual Computer, 2013, 29 : 893 - 905
  • [8] Statistical shape models for 3D medical image segmentation: A review
    Heimann, Tobias
    Meinzer, Hans-Peter
    [J]. MEDICAL IMAGE ANALYSIS, 2009, 13 (04) : 543 - 563
  • [9] Opening up the "black box" of medical image segmentation with statistical shape models
    von Landesberger, Tatiana
    Andrienko, Gennady
    Andrienko, Natalia
    Bremm, Sebastian
    Kirschner, Matthias
    Wesarg, Stefan
    Kuijper, Arjan
    [J]. VISUAL COMPUTER, 2013, 29 (09): : 893 - 905
  • [10] Seed Extension Based Interactive Medical Volume Segmentation Method
    Park, Anjin
    Jung, Hong-Lyel
    Eom, Joo Beom
    Ahn, Jaesung
    Lee, Byeong-Il
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, 2016, 127