A Selective Overview of Sparse Principal Component Analysis

被引:91
|
作者
Zou, Hui [1 ]
Xue, Lingzhou [2 ]
机构
[1] Univ Minnesota, Dept Stat, Minneapolis, MN 55455 USA
[2] Penn State Univ, State Coll, PA 16801 USA
基金
美国国家科学基金会;
关键词
Covariance matrices; mathematical programming; principal component analysis (PCA); statistical learning; SEMIDEFINITE RELAXATIONS; VARIABLE SELECTION; HIGH DIMENSION; POWER METHOD; PCA; MATRIX; DECOMPOSITION; CONSISTENCY; APPROXIMATION; RATES;
D O I
10.1109/JPROC.2018.2846588
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Principal component analysis (PCA) is a widely used technique for dimension reduction, data processing, and feature extraction. The three tasks are particularly useful and important in high-dimensional data analysis and statistical learning. However, the regular PCA encounters great fundamental challenges under high dimensionality and may produce "wrong" results. As a remedy, sparse PCA (SPCA) has been proposed and studied. SPCA is shown to offer a "right" solution under high dimensions. In this paper, we review methodological and theoretical developments of SPCA, as well as its applications in scientific studies.
引用
收藏
页码:1311 / 1320
页数:10
相关论文
共 50 条
  • [1] Sparse principal component analysis
    Zou, Hui
    Hastie, Trevor
    Tibshirani, Robert
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (02) : 265 - 286
  • [2] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    [J]. Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [3] Multilinear Sparse Principal Component Analysis
    Lai, Zhihui
    Xu, Yong
    Chen, Qingcai
    Yang, Jian
    Zhang, David
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (10) : 1942 - 1950
  • [4] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    [J]. TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [5] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [6] Streaming Sparse Principal Component Analysis
    Yang, Wenzhuo
    Xu, Huan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 494 - 503
  • [7] Sparse Generalised Principal Component Analysis
    Smallman, Luke
    Artemiou, Andreas
    Morgan, Jennifer
    [J]. PATTERN RECOGNITION, 2018, 83 : 443 - 455
  • [8] Biobjective sparse principal component analysis
    Carrizosa, Emilio
    Guerrero, Vanesa
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 132 : 151 - 159
  • [9] Weighted sparse principal component analysis
    Van Deun, Katrijn
    Thorrez, Lieven
    Coccia, Margherita
    Hasdemir, Dicle
    Westerhuis, Johan A.
    Smilde, Age K.
    Van Mechelen, Iven
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2019, 195
  • [10] Sparse kernel principal component analysis
    Tipping, ME
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 633 - 639