On the Convexity of Functions

被引:1
|
作者
Abu-As'ad, Ata [1 ]
Hirzallah, Omar [2 ]
机构
[1] Palestine Tech Univ Kadoorie, Dept Math, Tulkarm, Palestine
[2] Hashemite Univ, Dept Math, Zarqa, Jordan
关键词
Unitarily invariant norm; compact operator; positive operator; singular value; Schatten p-norm; Hilbert-Schmidt norm; convex function; INEQUALITIES;
D O I
10.2298/FIL1912773A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A, B, and X be bounded linear operators on a separable Hilbert space such that A, B are positive, X >= yl, for some positive real number gamma, and alpha is an element of [0,1]. Among other results, it is shown that if f (t) is an increasing function on [0, infinity) with f (0) = 0 such that f (root t) is convex, then gamma parallel to vertical bar f(alpha A + (1 - alpha) B) + f(beta vertical bar A-B1)parallel to vertical bar <= alpha f (A) X + (1 -alpha) Xf (B) parallel to vertical bar for every unitarily invariant norm, where beta = min (alpha, 1 alpha). Applications of our results are given.
引用
收藏
页码:3773 / 3781
页数:9
相关论文
共 50 条