An Application of Fuzzy C-Regression Models to Characteristic Point Detection in Biomedical Signals

被引:1
|
作者
Momot, Alina [1 ]
Momot, Michal [2 ]
Leski, Jacek M. [2 ,3 ]
机构
[1] Silesian Tech Univ, Inst Comp Sci, Akad 16, PL-44100 Gliwice, Poland
[2] Inst Med Technol & Equipment, PL-41800 Zabrze, Poland
[3] Silesian Tech Univ, Inst Elect, PL-44100 Gliwice, Poland
来源
MAN-MACHINE INTERACTIONS 3 | 2014年 / 242卷
关键词
fuzzy clustering; fuzzy c-regresion models; biomedical signals;
D O I
10.1007/978-3-319-02309-0_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work introduces a new fuzzy c-regression models with various loss functions. The algorithm consists in solving a sequence of weighted quadratic minimization problems where the weights used for the next iteration depend on values of models residuals for the current iteration. Simulations on real-life ECG signals are realized to evaluate the performance of the fuzzy clustering method.
引用
收藏
页码:257 / 263
页数:7
相关论文
共 50 条
  • [1] Fuzzy c-regression models
    Yu Yanhua
    Song Lixia
    Zhang Kunlun
    ADVANCES IN MECHATRONICS AND CONTROL ENGINEERING, PTS 1-3, 2013, 278-280 : 1323 - 1326
  • [2] On robust fuzzy c-regression models
    Leski, Jacek M.
    Kotas, Marian
    FUZZY SETS AND SYSTEMS, 2015, 279 : 112 - 129
  • [3] Fuzzy c-Regression Models for Fuzzy Numbers on a Graph
    Higuchi, Tatsuya
    Miyamoto, Sadaaki
    Endo, Yasunori
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2016, 20 (04) : 521 - 534
  • [4] An accelerating method for fuzzy c-regression models
    Yang, XB
    Kong, FS
    Liu, BH
    Meng, LL
    CONCURRENT ENGINEERING: THE WORLDWIDE ENGINEERING GRID, PROCEEDINGS, 2004, : 717 - 721
  • [5] Alternative Fuzzy c-Regression Models with Tolerance
    Iwata, Shunsuke
    Honda, Katsuhiro
    Notsu, Akira
    2014 JOINT 7TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 15TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS), 2014, : 501 - 505
  • [6] Fuzzy c-Regression Models Combined with Support Vector Regression
    Higuchi, Tatsuya
    Miyamoto, Sadaaki
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 2489 - 2493
  • [7] Fuzzy c-Regression Models with Cluster Characteristics Clarification
    Nasada, Shinpei
    Honda, Katsuhiro
    Ubukata, Seiki
    Notsu, Akira
    2019 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY), 2019, : 5 - 8
  • [8] Sparse Fuzzy c-regression Models with Application to T-S Fuzzy Systems Identification
    Luo, Minnan
    Sun, Fuchun
    Liu, Huaping
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 1571 - 1577
  • [9] ε-insensitive fuzzy c-regression models:: Introduction to ε-insensitive fuzzy modeling
    Leski, JM
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (01): : 4 - 15
  • [10] A Novel Cluster Validity Criterion for Fuzzy C-Regression Models
    Kung, Chung-Chun
    Su, Jui-Yiao
    Nieh, Yi-Fen
    2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 2009, : 1885 - +