Brain networks: small-worlds, after all?

被引:15
|
作者
Muller, Lyle [1 ]
Destexhe, Alain [1 ]
Rudolph-Lilith, Michelle [1 ]
机构
[1] CNRS, Unite Neurosci Informat & Complexite, Gif Sur Yvette, France
来源
NEW JOURNAL OF PHYSICS | 2014年 / 16卷
关键词
brain networks; small-worlds; graph theory; random graphs; TOPOLOGY;
D O I
10.1088/1367-2630/16/10/105004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Since its introduction, the 'small-world' effect has played a central role in network science, particularly in the analysis of the complex networks of the nervous system. From the cellular level to that of interconnected cortical regions, many analyses have revealed small-world properties in the networks of the brain. In this work, we revisit the quantification of small-worldness in neural graphs. We find that neural graphs fall into the 'borderline' regime of small-worldness, residing close to that of a random graph, especially when the degree sequence of the network is taken into account. We then apply recently introducted analytical expressions for clustering and distance measures, to study this borderline small-worldness regime. We derive theoretical bounds for the minimal and maximal small-worldness index for a given graph, and by semi-analytical means, study the small-worldness index itself. With this approach, we find that graphs with small-worldness equivalent to that observed in experimental data are dominated by their random component. These results provide the first thorough analysis suggesting that neural graphs may reside far away from the maximally small-world regime.
引用
收藏
页数:21
相关论文
共 50 条