High quality GaN-on-SiC with low thermal boundary resistance by employing an ultrathin AlGaN buffer layer

被引:0
|
作者
Feng, Yuxia [1 ,2 ]
Sun, Huarui [3 ,4 ]
Yang, Xuelin [1 ]
Liu, Kang [3 ,4 ]
Zhang, Jie [1 ]
Shen, Jianfei [1 ]
Liu, Danshuo [1 ]
Cai, Zidong [1 ]
Xu, Fujun [1 ]
Tang, Ning [1 ]
Yu, Tongjun [1 ]
Wang, Xinqiang [1 ,5 ]
Ge, Weikun [1 ]
Shen, Bo [1 ,5 ]
机构
[1] Peking Univ, State Key Lab Artificial Microstruct & Mesoscop P, Sch Phys, Beijing 100871, Peoples R China
[2] Beijing Univ Technol, Minist Educ, Key Lab Optoelect Technol, Beijing 100124, Peoples R China
[3] Harbin Inst Technol, Sch Sci, Shenzhen 518055, Peoples R China
[4] Harbin Inst Technol, Minist Ind & Informat Technol, Key Lab Micronano Optoelect Informat Syst, Shenzhen 518055, Peoples R China
[5] Collaborat Innovat Ctr Quantum Matter, Shenzhen 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1063/5.0037796
中图分类号
O59 [应用物理学];
学科分类号
摘要
High quality GaN films on SiC with low thermal boundary resistance (TBR) are achieved by employing an ultrathin low Al content AlGaN buffer layer. Compared with the conventional thick AlN buffer layer, the ultrathin buffer layer can not only improve the crystal quality of the subsequent GaN layer but also reduce the TBR at the GaN/SiC interface simultaneously. The ultrathin AlGaN buffer layer is introduced by performing a pretreatment of the SiC substrate with trimethylaluminum followed by the growth of GaN with an enhanced lateral growth rate. The enhanced lateral growth rate contributes to the formation of basal plane stacking faults (BSFs) in the GaN layer, where the BSFs can significantly reduce the threading dislocation density. We reveal underling mechanisms of reducing TBR and dislocation density by the ultrathin buffer layer. We propose this work is of great importance toward the performance improvement and cost reduction of higher power GaN-on-SiC electronics.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Fully-vertical GaN-on-SiC Schottky barrier diode with ultrathin AlGaN buffer layer
    Sun, Yuting
    Feng, Yuxia
    Wei, Jia
    Wang, Maojun
    Yang, Xuelin
    Mei, Wenkang
    Yang, Yufei
    Shen, Bo
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2024, 39 (02)
  • [2] Low ON-Resistance Fully-Vertical GaN-on-SiC Schottky Barrier Diode with Conductive Buffer Layer
    Li, Yanjun
    Yang, Shu
    Liu, Kai
    Cheng, Kai
    Sheng, Kuang
    Shen, Bo
    [J]. 2022 IEEE 34TH INTERNATIONAL SYMPOSIUM ON POWER SEMICONDUCTOR DEVICES AND ICS (ISPSD), 2022, : 333 - 336
  • [3] Record-Low Thermal Boundary Resistance between Diamond and GaN-on-SiC for Enabling Radiofrequency Device Cooling
    Malakoutian, Mohamadali
    Field, Daniel E.
    Hines, Nicholas J.
    Pasayat, Shubhra
    Graham, Samuel
    Kuball, Martin
    Chowdhury, Srabanti
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (50) : 60553 - 60560
  • [4] High Voltage and Low Leakage GaN-on-SiC MISHEMTs on a "Buffer-Free" Heterostructure
    Hult, Bjorn
    Thorsell, Mattias
    Chen, Jr-Tai
    Rorsman, Niklas
    [J]. IEEE ELECTRON DEVICE LETTERS, 2022, 43 (05) : 781 - 784
  • [5] Benchmarking of Thermal Boundary Resistance in AlGaN/GaN HEMTs on SiC Substrates: Implications of the Nucleation Layer Microstructure
    Manoi, Athikom
    Pomeroy, James W.
    Killat, Nicole
    Kuball, Martin
    [J]. IEEE ELECTRON DEVICE LETTERS, 2010, 31 (12) : 1395 - 1397
  • [6] Improved GaN-on-SiC Transistor Thermal Resistance by Systematic Nucleation Layer Growth Optimization
    Pomeroy, J.
    Rorsman, N.
    Chen, Jr-Tai
    Forsberg, U.
    Janzen, E.
    Kuball, M.
    [J]. 2013 IEEE COMPOUND SEMICONDUCTOR INTEGRATED CIRCUIT SYMPOSIUM (CSICS): INTEGRATED CIRCUITS IN GAAS, INP, SIGE, GAN AND OTHER COMPOUND SEMICONDUCTORS, 2013,
  • [7] Variable thermal resistance model of GaN-on-SiC with substrate scalability
    Arivazhagan, L.
    Nirmal, D.
    Chander, Subhash
    Ajayan, J.
    Godfrey, D.
    Rajkumar, J. S.
    Lakshmi, S. Bhagya
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2020, 19 (04) : 1546 - 1554
  • [8] Variable thermal resistance model of GaN-on-SiC with substrate scalability
    L. Arivazhagan
    D. Nirmal
    Subhash Chander
    J. Ajayan
    D. Godfrey
    J. S. Rajkumar
    S. Bhagya Lakshmi
    [J]. Journal of Computational Electronics, 2020, 19 : 1546 - 1554
  • [9] Low thermal resistance of a GaN-on-SiC transistor structure with improved structural properties at the interface
    Chen, Jr-Tai
    Pomeroy, James W.
    Rorsman, Niklas
    Xia, Chao
    Virojanadara, Chariya
    Forsberg, Urban
    Kuball, Martin
    Janzen, Erik
    [J]. JOURNAL OF CRYSTAL GROWTH, 2015, 428 : 54 - 58
  • [10] Optimal AlGaN/GaN HEMT Buffer Layer Thickness in the Presence of an Embedded Thermal Boundary
    Babic, Dubravko I.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (04) : 1047 - 1053