Lie Symmetry Analysis for Cosserat Rods

被引:0
|
作者
Michels, Dominik L. [1 ]
Lyakhov, Dmitry A.
Gerdt, Vladimir P. [2 ,3 ]
Sobottka, Gerrit A. [4 ]
Weber, Andreas G. [4 ]
机构
[1] CALTECH, Dept Comp & Math Sci, 1200 E Calif Blvd,MC 305-16, Pasadena, CA 91125 USA
[2] Natl Acad Sci Belarus, AV Luikov Heat & Mass Transfer Inst, Radiat Gaseous Dynam Lab, Minsk 220072, BELARUS
[3] Joint Inst Nucl Res, Grp Algebra & Quantum Computat, Dubna 141980, Russia
[4] Univ Bonn, Inst Comp Sci 2, Multimedia Simulat & Virtual Real Grp, D-53113 Bonn, Germany
基金
俄罗斯基础研究基金会;
关键词
Cosserat Rods; General Solution; Janet Basis; Kirchhoff Rods; Lie Symmetry Method; DIFFERENTIAL-EQUATIONS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider a subsystem of the Special Cosserat Theory of Rods and construct an explicit form of its solution that depends on three arbitrary functions in (s, t) and three arbitrary function in t. Assuming analyticity of the arbitrary functions in a domain under consideration, we prove that the obtained solution is analytic and general. The Special Cosserat Theory of Rods describes the dynamic equilibrium of 1-dimensional continua, i.e. slender structures like fibers, by means of a system of partial differential equations.
引用
收藏
页码:324 / 334
页数:11
相关论文
共 50 条
  • [1] Cosserat Rods with Projective Dynamics
    Soler, Carlota
    Martin, Tobias
    Sorkine-Hornung, Olga
    COMPUTER GRAPHICS FORUM, 2018, 37 (08) : 137 - 147
  • [2] Deformation Analysis of Cosserat Rods Using Piecewise Clothoid Approximation
    Sivaj, Sreejath
    Saha, Subir Kumar
    Singh, Satinder Paul
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2025, 126 (01)
  • [3] Torsion of chiral Cosserat elastic rods
    Iesan, D.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2010, 29 (06) : 990 - 997
  • [4] Dynamic equations of thermoelastic Cosserat rods
    Cao, D. Q.
    Song, M. T.
    Tucker, R. W.
    Zhu, W. D.
    Liu, D. S.
    Huang, W. H.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (07) : 1880 - 1887
  • [5] Geodesic finite elements for Cosserat rods
    Sander, Oliver
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 82 (13) : 1645 - 1670
  • [6] A thermoelastoplastic theory for special Cosserat rods
    Smriti
    Kumar, Ajeet
    Grossmann, Alexander
    Steinmann, Paul
    MATHEMATICS AND MECHANICS OF SOLIDS, 2019, 24 (03) : 686 - 700
  • [7] Isogeometric collocation for nonlinear dynamic analysis of Cosserat rods with frictional contact
    Weeger, Oliver
    Narayanan, Bharath
    Dunn, Martin L.
    NONLINEAR DYNAMICS, 2018, 91 (02) : 1213 - 1227
  • [8] Isogeometric collocation for nonlinear dynamic analysis of Cosserat rods with frictional contact
    Oliver Weeger
    Bharath Narayanan
    Martin L. Dunn
    Nonlinear Dynamics, 2018, 91 : 1213 - 1227
  • [9] TOWARDS VISCOPLASTIC CONSTITUTIVE MODELS FOR COSSERAT RODS
    Doerlich, Vanessa
    Linn, Joachim
    Scheffer, Tobias
    Diebels, Stefan
    ARCHIVE OF MECHANICAL ENGINEERING, 2016, 63 (02) : 215 - 230
  • [10] Lie symmetry analysis of the Heisenberg equation
    Zhao, Zhonglong
    Han, Bo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 45 : 220 - 234