Development of Paraffin-Based Shape-Stable Phase Change Material for Thermal Energy Storage

被引:5
|
作者
Aulakh, Jaspreet Singh [1 ]
Joshi, Deepika P. [1 ]
机构
[1] GB Pant Univ Agr & Technol, Pantnagar 263145, Uttarakhand, India
关键词
COMPOSITES; STABILITY; ENCAPSULATION; SEBS; HDPE;
D O I
10.1134/S0965545X22200056
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In the present work, a shape-stable phase change material has been prepared by blending the polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene triblock copolymer and paraffin. Different mass fractions of block copolymer have been used to produce composites material. The structural, chemical and morphological analyses of composites have been done. Differential scanning calorimetry and thermogravimetric analysis results indicated that the addition of supporting material (block copolymer) improves the thermal stability without much affecting the phase transition temperature of paraffin. The paraffin leakage in composites is analyzed by mass loss over thermal cycles in an oven at 80 degrees C and the best performance has been achieved for 20 wt% of block copolymer into the composite. The thermal reliability of this sample has been investigated after 100 thermal cycles. Overall inspection of results suggested that the prepared composite is the most appropriate shape-stable phase change material for thermal energy storage applications because of their acceptable energy storage capacity, good thermal stability and reliability, physical and chemical compatibility, low cost and easy synthesis process.
引用
收藏
页码:308 / 317
页数:10
相关论文
共 50 条
  • [2] Fabrication of thermal energy storage wood composite based on shape-stable phase change material
    Liu, Jingyi
    Jia, Shifang
    Lin, Xianxian
    Cao, Huimin
    Wang, Wenbin
    Guo, Xi
    Sun, Weisheng
    [J]. MATERIALS RESEARCH EXPRESS, 2021, 8 (05)
  • [3] Preparation and characterization of paraffin/palygorskite shape-stable composite phase change materials for thermal energy storage
    Zhang, Ning
    Guo, Haijun
    Xiong, Lian
    Zhang, Hairong
    Chen, Xinde
    [J]. JOURNAL OF ENERGY STORAGE, 2021, 34
  • [4] Core-shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage
    Ye, Shibing
    Zhang, Qinglong
    Hu, Dingding
    Feng, Jiachun
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (07) : 4018 - 4025
  • [5] Nano-Ag modified bio-based shape-stable phase change material for thermal energy storage
    Ma, Yan
    Zou, Minming
    Chen, Wenjing
    Xiao, Shikun
    Luo, Wenxing
    Zhou, Jiatao
    Che, Yinhui
    Zu, Shuai
    Li, Qinglin
    Jiang, Xiongxin
    Hu, Xiaowu
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (15) : 23056 - 23068
  • [6] Property-enhanced paraffin-based composite phase change material for thermal energy storage: a review
    Mishra, Durgesh Kumar
    Bhowmik, Chiranjib
    Bhowmik, Sumit
    Pandey, Krishna Murari
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (29) : 43556 - 43587
  • [7] Property-enhanced paraffin-based composite phase change material for thermal energy storage: a review
    Durgesh Kumar Mishra
    Chiranjib Bhowmik
    Sumit Bhowmik
    Krishna Murari Pandey
    [J]. Environmental Science and Pollution Research, 2022, 29 : 43556 - 43587
  • [8] Enhanced thermal energy storage of a paraffin-based phase change material (PCM) using nano carbons
    Sun, Xiaoqin
    Liu, Lihui
    Mo, Yajing
    Li, Jie
    Li, Chuanchang
    [J]. APPLIED THERMAL ENGINEERING, 2020, 181 (181)
  • [9] Preparation and characterization of a shape-stable xylitol/expanded graphite composite phase change material for thermal energy storage
    Zhou, Hao
    Lv, Laiquan
    Zhang, Yize
    Ji, Mengting
    Cen, Kefa
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 230
  • [10] Review on bio-based shape-stable phase change materials for thermal energy storage and utilization
    Wang, Chongwei
    Cheng, Chuanxiao
    Jin, Tingxiang
    Dong, Hongsheng
    [J]. JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2022, 14 (05)