Fractal retraction and fractal dimension of dynamical manifold

被引:1
|
作者
El-Ghoul, M [1 ]
El-Zhouny, H
Abo-El-Fotooh, SI
机构
[1] Tanta Univ, Fac Sci, Dept Math, Tanta 31527, Egypt
[2] Al Azhar Univ, Fac Sci, Dept Math, Cairo, Egypt
关键词
D O I
10.1016/S0960-0779(02)00213-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we will introduce a new type of retraction of a manifold, it is the retraction of dynamical manifold. The folding of retraction of dynamical manifold is defined and discussed. The retraction of dynamical manifold after and before the folding and unfolding will be discussed. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:187 / 192
页数:6
相关论文
共 50 条
  • [1] Fractal dimension of chaotic dynamical spaces
    Nada, SI
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 30 (02) : 374 - 379
  • [2] Dynamical fractal dimension: Direct and inverse problems
    Bevilacqua, L.
    Barros, M. M.
    [J]. IUTAM SYMPOSIUM ON DYNAMICS AND CONTROL OF NONLINEAR SYSTEMS WITH UNCERTAINTY, 2007, 2 : 127 - +
  • [3] Dimension of fractal growth patterns as a dynamical exponent
    Davidovitch, B
    Procaccia, I
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (17) : 3608 - 3611
  • [4] Fractal dimension for fractal structures
    Fernandez-Martinez, M.
    Sanchez-Granero, M. A.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2014, 163 : 93 - 111
  • [5] Fractal dimension of transport coefficients in a deterministic dynamical system
    Koza, Z
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (45): : 10859 - 10877
  • [6] A note on the fractal dimension of attractors of dissipative dynamical systems
    Chepyzhov, VV
    Ilyin, AA
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (06) : 811 - 819
  • [7] Numerical analysis of dynamical systems and the fractal dimension of boundaries
    Duarte, LGS
    da Mota, LACP
    de Oliveira, HP
    Ramos, RO
    Skea, JEF
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1999, 119 (2-3) : 256 - 271
  • [8] Fractal dimension estimate for invariant set in complete Riemannian manifold
    Qu, Chengqin
    Zhou, Zuoling
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 31 (05) : 1165 - 1172
  • [9] Fractal Dimension of Color Fractal Images
    Ivanovici, Mihai
    Richard, Noel
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (01) : 227 - 235
  • [10] APPROXIMATION WITH FRACTAL FUNCTIONS BY FRACTAL DIMENSION
    Liang, Y. S.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)