Families of gauge conditions in BV formalism

被引:5
|
作者
Mikhailov, Andrei [1 ]
Schwarz, Albert [2 ]
机构
[1] Univ Estadual Paulista, Inst Fis Teor, Sao Paulo, Brazil
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
来源
基金
巴西圣保罗研究基金会;
关键词
BRST Quantization; Gauge Symmetry; Topological Strings; BATALIN-VILKOVISKY FORMALISM; GEOMETRY;
D O I
10.1007/JHEP07(2017)063
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In BV formalism we can consider a Lagrangian submanifold as a gauge condition. Starting with the BV action functional we construct a closed form on the space of Lagrangian submanifolds. If the action functional is invariant with respect to some group H and Lambda is an H-invariant family of Lagrangian submanifold then under certain conditions we construct a form on Lambda that descends to a closed form on Lambda/H. Integrating the latter form over a cycle in Lambda/H we obtain numbers that can have interesting physical meaning. We show that one can get string amplitudes this way. Applying this construction to topological quantum field theories one obtains topological invariants.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Families of gauge conditions in BV formalism
    Andrei Mikhailov
    Albert Schwarz
    Journal of High Energy Physics, 2017
  • [2] Axial and gauge anomalies in the BV formalism
    BarcelosNeto, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (28): : 5053 - 5066
  • [3] Unfree gauge symmetry in the BV formalism
    Kaparulin, D. S.
    Lyakhovich, S. L.
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (08):
  • [4] Axial and Gauge Anomalies in the BV Formalism
    Int J Mod Phys A, 28 (5053):
  • [5] Unfree gauge symmetry in the BV formalism
    D. S. Kaparulin
    S. L. Lyakhovich
    The European Physical Journal C, 2019, 79
  • [6] Integration over families of Lagrangian submanifolds in BV formalism
    Mikhailov, Andrei
    NUCLEAR PHYSICS B, 2018, 928 : 107 - 159
  • [7] FAILURE OF USUAL GAUGE FORMALISM IN A CLASS OF GAUGE CONDITIONS
    HSU, JP
    MAC, E
    SUDARSHAN, ECG
    PHYSICS LETTERS B, 1975, 59 (05) : 471 - 474
  • [8] DGLA Dg and BV formalism
    Andrei Mikhailov
    Journal of High Energy Physics, 2020
  • [9] DGLA Dg and BV formalism
    Mikhailov, Andrei
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (12)
  • [10] RG and BV-formalism
    Lavrov, Peter M.
    PHYSICS LETTERS B, 2020, 803