Asymptotics of Polynomials Orthogonal with respect to a Logarithmic Weight

被引:3
|
作者
Conway, Thomas Oliver [1 ]
Deift, Percy [1 ]
机构
[1] New York Univ, Courant Inst Math Sci, Dept Math, 251 Mercer Str, New York, NY 10012 USA
关键词
orthogonal polynomials; Riemann-Hilbert problems; recurrence coefficients; steepest descent method; CURVES;
D O I
10.3842/SIGMA.2018.056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we compute the asymptotic behavior of the recurrence coefficients for polynomials orthogonal with respect to a logarithmic weight w(x)dx = log 2k/1-x dx on (-1, 1), k > 1, and verify a conjecture of A. Magnus for these coefficients. We use Riemann-Hilbert/steepest-descent methods, but not in the standard way as there is no known parametrix for the Riemann-Hilbert problem in a neighborhood of the logarithmic singularity at x = 1.
引用
收藏
页数:66
相关论文
共 50 条