Extinction and non-extinction of solutions for a nonlocal reaction-diffusion problem

被引:0
|
作者
Liu, Wenjun [1 ,2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Phys, Nanjing 210044, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
关键词
reaction-diffusion equation; extinction; non-extinction; BLOW-UP RATE; P-LAPLACIAN; BEHAVIOR; EQUATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate extinction properties of solutions for the homogeneous Dirichlet boundary value problem of the nonlocal reaction-diffusion equation u(t) - d Delta u + ku(p) = integral(Omega) u(q)(x, t)dx with p, q is an element of (0, 1) and k, d > 0. We show that q = p is the critical extinction exponent. Moreover, the precise decay estimates of solutions before the occurrence of the extinction are derived.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条