Road Extraction from High Resolution Remote Sensing Images Based on Vector Field Learning

被引:2
|
作者
Liang, Peng [1 ]
Shi, Wenzhong [2 ]
Ding, Yixing [3 ]
Liu, Zhiqiang [4 ]
Shang, Haolv [3 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430072, Peoples R China
[2] Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[4] Piesat Informat Technol Co Ltd, Beijing 100195, Peoples R China
关键词
road extraction; vector field learning; high resolution remote sensing image; encoder-decoder; DCNN; NETWORK;
D O I
10.3390/s21093152
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Accurate and up-to-date road network information is very important for the Geographic Information System (GIS) database, traffic management and planning, automatic vehicle navigation, emergency response and urban pollution sources investigation. In this paper, we use vector field learning to extract roads from high resolution remote sensing imaging. This method is usually used for skeleton extraction in nature image, but seldom used in road extraction. In order to improve the accuracy of road extraction, three vector fields are constructed and combined respectively with the normal road mask learning by a two-task network. The results show that all the vector fields are able to significantly improve the accuracy of road extraction, no matter the field is constructed in the road area or completely outside the road. The highest F1 score is 0.7618, increased by 0.053 compared with using only mask learning.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Road extraction from high-resolution remote sensing images based on HRNet
    Chen X.
    Liu Z.
    Zhou S.
    Yu H.
    Liu Y.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2024, 46 (04): : 1167 - 1173
  • [2] Road extraction from high-resolution remote sensing images based on characteristics
    Yu, Jie
    Qin, Huiling
    Yan, Qin
    Tan, Ming
    Zhang, Guoning
    REMOTE SENSING AND GIS DATA PROCESSING AND APPLICATIONS; AND INNOVATIVE MULTISPECTRAL TECHNOLOGY AND APPLICATIONS, PTS 1 AND 2, 2007, 6790
  • [3] Road Information Extraction from High-Resolution Remote Sensing Images Based on Road Reconstruction
    Zhou, Tingting
    Sun, Chenglin
    Fu, Haoyang
    REMOTE SENSING, 2019, 11 (01)
  • [4] A Road Extraction Method for High Resolution Remote Sensing Images
    Dai J.-G.
    Zhu T.-T.
    Zhang Y.-L.
    Ma R.-C.
    Wang X.-T.
    Zhang T.-D.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (11): : 2461 - 2471
  • [5] Road Extraction from High-resolution Remote Sensing Images Based on Synthetical Characteristics
    Chen, Yongsheng
    Hong, Zhijia
    He, Qun
    Ma, Hongbin
    MEASUREMENT TECHNOLOGY AND ENGINEERING RESEARCHES IN INDUSTRY, PTS 1-3, 2013, 333-335 : 828 - 831
  • [6] Intelligent road extraction from high resolution remote sensing images based on optimized SVM
    Yang, Yuntao
    Wu, Qichen
    Yu, Ruipeng
    Wang, Li
    Zhao, Yize
    Ding, Cui
    Yin, Yunpeng
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2024, 17 (04)
  • [7] A Review of Deep Learning-Based Methods for Road Extraction from High-Resolution Remote Sensing Images
    Liu, Ruyi
    Wu, Junhong
    Lu, Wenyi
    Miao, Qiguang
    Zhang, Huan
    Liu, Xiangzeng
    Lu, Zixiang
    Li, Long
    REMOTE SENSING, 2024, 16 (12)
  • [8] EUNetMTL: multitask joint learning for road extraction from high-resolution remote sensing images
    Yi, Feng
    Te, Rigen
    Zhao, Yuheng
    Xu, Guocheng
    REMOTE SENSING LETTERS, 2022, 13 (03) : 258 - 268
  • [9] A Method for Road Extraction from High-Resolution Remote Sensing Images Based on Multi-Kernel Learning
    Xu, Rui
    Zeng, Yanfang
    INFORMATION, 2019, 10 (12)
  • [10] Application Of High-Resolution Remote Sensing Images In Road Extraction
    Liu, Huan
    Yan, Zhen
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY, ENVIRONMENT AND CHEMICAL ENGINEERING (AEECE 2016), 2016, 89 : 346 - 352