Friction Stir Processing of Degraded Austenitic Stainless Steel Nuclear Fuel Dry Cask Storage System Canisters

被引:3
|
作者
Sutton, Ben [1 ]
Ross, Ken [2 ]
Grant, Glenn [2 ]
Cannell, Gary [3 ]
Frederick, Greg [1 ]
Couch, Robert [1 ]
机构
[1] Elect Power Res Inst, 1300 W WT Harris Blvd, Charlotte, NC 28262 USA
[2] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA
[3] Fluor Enterprises Inc, 1200 Jadwin Ave, Richland, WA USA
来源
关键词
Friction stir process; Stress corrosion crack; Sensitization; Repair;
D O I
10.1007/978-3-319-52333-0_31
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Chloride-induced stress corrosion cracking (CISCC) of austenitic stainless steel dry cask storage system (DCSS) canisters has been identified as an industry concern. Typical DCSS canisters are constructed from Types 304 or 316 stainless steel or their variants via conventional fusion welding processes. The presence of residual tensile stress and Cr-carbide precipitation within the weld heat affected zone (HAZ) places canisters near salt-bearing environments at an elevated risk for CISCC. The current study evaluates the suitability of friction stir processing (FSP) to repair stress corrosion cracking (SCC) and remediate sensitized fusion weld HAZs. FSP was applied to furnace sensitized Type 304 specimens containing laboratory-generated SCC and evaluated using liquid penetrant inspection, phased array ultrasonic inspection, and optical microscopy. In addition, fusion welded Type 304L specimens were fabricated, subjected to FSP, and destructively analyzed via ASTM A262 and optical microscopy. Results demonstrate that FSP is a viable option for SCC repair and sensitization remediation.
引用
收藏
页码:343 / 351
页数:9
相关论文
共 50 条
  • [1] Development of Friction Stir Processing for Repair of Nuclear Dry Cask Storage System Canisters
    Ross, Ken
    Sutton, Ben
    Grant, Glenn
    Cannell, Gary
    Frederick, Greg
    Couch, Robert
    [J]. FRICTION STIR WELDING AND PROCESSING IX, 2017, : 39 - 46
  • [2] A FEASIBILITY STUDY ON CRACK REPAIR IN AUSTENITIC STAINLESS STEEL DRY STORAGE CANISTERS USING ISOTHERMAL FRICTION STIR WELDING
    Bhattacharyya, Madhumanti
    Charit, Indrajit
    Raja, Krishnan
    Darsell, Jens
    Jana, Saumyadeep
    [J]. PROCEEDINGS OF THE ASME 2020 PRESSURE VESSELS & PIPING CONFERENCE (PVP2020), VOL 1, 2020,
  • [3] Predicting stress corrosion cracking in the canisters of used nuclear fuel dry cask storage systems
    Ferry, Sara
    Ballinger, Ronald
    Crystal, Isabel
    Solis, Dominic
    Black, Bradley
    [J]. Radwaste Solutions, 2014, 21 (01): : 40 - 48
  • [4] Structural refinement in austenitic stainless steel by submerged friction stir processing
    Selvam, K.
    Prakash, A.
    Grewal, H. S.
    Arora, H. S.
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2017, 197 : 200 - 207
  • [5] Dry Cask Storage Booming for Spent Nuclear Fuel
    Reitenbach, Gail
    [J]. POWER, 2015, 159 (02) : 45 - 48
  • [6] Friction stir welding of AISI 304 austenitic stainless steel
    Meran, C.
    Kovan, V.
    Alptekin, A.
    [J]. MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2007, 38 (10) : 829 - 835
  • [7] Microstructures in Friction Stir Welded 304 Austenitic Stainless Steel
    H. Kokawa
    S. H. C. Park
    Y. S. Sato
    K. Okamoto
    S. Hirano
    M. Inagaki
    [J]. Welding in the World, 2005, 49 (3-4) : 34 - 40
  • [8] Friction stir welding of single crystal austenitic stainless steel
    Ikeda, K.
    Jeon, J. J. S.
    Mironov, S.
    Sato, Y. S.
    Fujii, H. T.
    Kokawa, H.
    Park, S. H. C.
    Hirano, S.
    [J]. PROCEEDINGS OF THE 1ST INTERNATIONAL JOINT SYMPOSIUM ON JOINING AND WELDING, 2013, : 449 - 451
  • [9] CFD analysis of spent fuel dry cask storage system for High burnup nuclear fuel
    Fulpagare, Yogesh
    Yao, Tao
    Li, Chao-Jen
    Wang, Chi-Chuan
    [J]. PROGRESS IN NUCLEAR ENERGY, 2023, 161
  • [10] Stress corrosion cracking failure of friction stir welded nuclear grade austenitic stainless steel
    Rajasekaran, R.
    Lakshminarayanan, A. K.
    Damodaram, R.
    Balasubramanian, V.
    [J]. ENGINEERING FAILURE ANALYSIS, 2021, 120