Direct and Indirect Bactericidal Effects of Cold Atmospheric-Pressure Microplasma and Plasma Jet

被引:21
|
作者
Yahaya, Ahmad Guji [1 ]
Okuyama, Tomohiro [2 ]
Kristof, Jaroslav [3 ]
Blajan, Marius Gabriel [3 ]
Shimizu, Kazuo [1 ,2 ,3 ]
机构
[1] Shizuoka Univ, Grad Sch Sci & Technol, Hamamatsu, Shizuoka 8328561, Japan
[2] Shizuoka Univ, Grad Sch Integrated Sci & Technol, Hamamatsu, Shizuoka 4328561, Japan
[3] Shizuoka Univ, Org Innovat & Social Collaborat, Hamamatsu, Shizuoka 4328561, Japan
来源
MOLECULES | 2021年 / 26卷 / 09期
关键词
DBD microplasma; plasma jet; sterilization; plasma activated water; UV-Vis spectroscopy; reactive oxygen; nitrogen species; PROPIONIBACTERIUM-ACNES; OXYGEN CONCENTRATION; GENERATED RONS; STERILIZATION; IRRADIATION; TRANSPORT; SURROGATE; REMOVAL; AGAROSE;
D O I
10.3390/molecules26092523
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The direct and indirect bactericidal effects of dielectric barrier discharge (DBD) cold atmospheric-pressure microplasma in an air and plasma jet generated in an argon-oxygen gas mixture was investigated on Staphylococcus aureus and Cutibacterium acnes. An AC power supply was used to generate plasma at relatively low discharge voltages (0.9-2.4 kV) and frequency (27-30 kHz). Cultured bacteria were cultivated at a serial dilution of 10(-5), then exposed to direct microplasma treatment and indirect treatment through plasma-activated water (PAW). The obtained results revealed that these methods of bacterial inactivation showed a 2 and 1 log reduction in the number of survived CFU/mL with direct treatment being the most effective means of treatment at just 3 min using air. UV-Vis spectroscopy confirmed that an increase in treatment time at 1.2% O-2, 98.8% Ar caused a decrease in O-2 concentration in the water as well as a decrease in absorbance of the peaks at 210 nm, which are attributed NO2- and NO3- concentration in the water, termed denitratification and denitritification in the treated water, respectively.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [1] Atmospheric-pressure cold plasma jet for medical applications
    Kang, Won-Seok
    Hong, Yong-Cheol
    Hong, Yoo-Beom
    Kim, Jae-Ho
    Uhm, Han Sup
    SURFACE & COATINGS TECHNOLOGY, 2010, 205 : S418 - S421
  • [2] Discharge and Plasma Bullet Formation in a Capillary DBD Atmospheric-Pressure Microplasma Jet
    Oh, Jun-Seok
    Bryant, Paul M.
    Bradley, James W.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (11) : 2352 - 2353
  • [3] Cold atmospheric-pressure air plasma jet: Physics and opportunities
    Lu, XinPei
    Liu, DaWei
    Xian, YuBin
    Nie, LanLan
    Cao, YingGuang
    He, GuangYuan
    PHYSICS OF PLASMAS, 2021, 28 (10)
  • [4] Localized surface functionalization of polycaprolactone with atmospheric-pressure microplasma jet
    Wang, Chengyang
    Hamid, Qudus
    Snyder, Jessica
    Ayan, Halim
    Sun, Wei
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2015, 1 (02):
  • [5] Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria
    Fridman, Gregory
    Brooks, Ari D.
    Balasubramanian, Manjula
    Fridman, Alexander
    Gutsol, Alexander
    Vasilets, Victor N.
    Ayan, Halim
    Friedman, Gary
    PLASMA PROCESSES AND POLYMERS, 2007, 4 (04) : 370 - 375
  • [6] On cold atmospheric-pressure plasma jet induced DNA damage in cells
    Gaur, Nishtha
    Kurita, Hirofumi
    Oh, Jun-Seok
    Miyachika, Saki
    Ito, Masafumi
    Mizuno, Akira
    Cowin, Allison J.
    Allinson, Sarah
    Short, Robert D.
    Szili, Endre J.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (03)
  • [7] Characteristic and Application Study of Cold Atmospheric-Pressure Nitrogen Plasma Jet
    Liu, Xin
    Chen, Faze
    Huang, Shuai
    Yang, Xiaolong
    Lu, Yao
    Zhou, Wenlong
    Xu, Wenji
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (06) : 1959 - 1968
  • [8] Effects of Atmospheric-Pressure Plasma Jet on Pepsin Structure and Function
    Jijie, Roxana
    Luca, Cristina
    Pohoata, Valentin
    Topala, Ionut
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2012, 40 (11) : 2980 - 2985
  • [9] Thermocouple and electric probe measurements in a cold atmospheric-pressure microwave plasma jet
    Chepelev, V. M.
    Chistolinov, A. V.
    Khromov, M. A.
    Antipov, S. N.
    Gadzhiev, M. Kh
    XXXIV INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES WITH MATTER, 2020, 1556
  • [10] Inactivation of the Tomato Pathogen Cladosporium fulvum by an Atmospheric-Pressure Cold Plasma Jet
    Lu, Qianqian
    Liu, Dongping
    Song, Ying
    Zhou, Renwu
    Niu, Jinhai
    PLASMA PROCESSES AND POLYMERS, 2014, 11 (11) : 1028 - 1036