Structured Space-Sphere Point Processes and K-Functions

被引:1
|
作者
Moller, Jesper [1 ]
Christensen, Heidi S. [1 ]
Cuevas-Pacheco, Francisco [1 ]
Christoffersen, Andreas D. [1 ]
机构
[1] Aalborg Univ, Dept Math Sci, DK-9220 Aalborg, Denmark
关键词
First and second order separability; Functional summary statistic; Log Gaussian Cox process; Pair correlation function; Shot noise Cox process; 2ND-ORDER ANALYSIS; STATISTICS; HYPOTHESIS;
D O I
10.1007/s11009-019-09712-w
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper concerns space-sphere point processes, that is, point processes on the product space of DOUBLE-STRUCK CAPITAL Rd (the d-dimensional Euclidean space) and Sk(the k-dimensional sphere). We consider specific classes of models for space-sphere point processes, which are adaptations of existing models for either spherical or spatial point processes. For model checking or fitting, we present the space-sphere K-function which is a natural extension of the inhomogeneous K-function for point processes on DOUBLE-STRUCK CAPITAL Rdto the case of space-sphere point processes. Under the assumption that the intensity and pair correlation function both have a certain separable structure, the space-sphere K-function is shown to be proportional to the product of the inhomogeneous spatial and spherical K-functions. For the presented space-sphere point process models, we discuss cases where such a separable structure can be obtained. The usefulness of the space-sphere K-function is illustrated for real and simulated datasets with varying dimensions d and k.
引用
收藏
页码:569 / 591
页数:23
相关论文
共 50 条
  • [1] Structured Space-Sphere Point Processes and K-Functions
    Jesper Møller
    Heidi S. Christensen
    Francisco Cuevas-Pacheco
    Andreas D. Christoffersen
    [J]. Methodology and Computing in Applied Probability, 2021, 23 : 569 - 591
  • [2] Currents and K-functions for Fiber Point Processes
    Hansen, Pernille E. H.
    Waagepetersen, Rasmus
    Svane, Anne Marie
    Sporring, Jon
    Stephensen, Hans J. T.
    Hasselholt, Stine
    Sommer, Stefan
    [J]. GEOMETRIC SCIENCE OF INFORMATION (GSI 2021), 2021, 12829 : 127 - 134
  • [3] Asymptotic goodness-of-fit tests for point processes based on scaled empirical K-functions
    Heinrich, L.
    [J]. STATISTICS, 2018, 52 (04) : 829 - 851
  • [4] ON THE HYPERGEOMETRIC MATRIX k-FUNCTIONS
    Rahman, G.
    Ghaffar, A.
    Purohit, S. D.
    Mubeen, S.
    Arshad, M.
    [J]. BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 8 (04): : 98 - 111
  • [5] Algebraic independence and K-functions
    Philippon, P
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 497 : 1 - 15
  • [6] A Matrix Variance Inequality for k-Functions
    Rosli, Norhayati
    Ahmad, Wan Muhamad Amir W.
    [J]. MATEMATIKA, 2007, 23 (01) : 1 - 8
  • [7] BESSEL K-FUNCTIONS FOR JORDAN ALGEBRAS
    CLERC, JL
    [J]. LECTURE NOTES IN MATHEMATICS, 1988, 1359 : 122 - 134
  • [8] TEMPORAL ANALOGS TO SPATIAL K-FUNCTIONS
    CANNON, A
    CRESSIE, N
    [J]. BIOMETRICAL JOURNAL, 1995, 37 (03) : 351 - 373
  • [9] Minimal models for N∞K-functions
    Dijksma, Aad
    Luger, Annemarie
    Shondin, Yuri
    [J]. OPERATOR THEORY AND INDEFINITE INNER PRODUCT SPACES, 2006, 163 : 97 - +
  • [10] SOME RESULTS ON A GENERALIZED HYPERGEOMETRIC k-FUNCTIONS
    Rahman, Gauhar
    Arshad, Muhammad
    Mubeen, Shahid
    [J]. BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 8 (03): : 66 - 77