EXISTENCE OF NONPARAMETRIC SOLUTIONS FOR A CAPILLARY PROBLEM IN WARPED PRODUCTS

被引:2
|
作者
Lira, Jorge H. [1 ]
Wanderley, Gabriela A. [1 ]
机构
[1] Univ Fed Ceara, Dept Math, BR-60455760 Fortaleza, Ceara, Brazil
关键词
D O I
10.2140/pjm.2014.269.407
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that there exist solutions for a nonparametric capillary problem in a wide class of Riemannian manifolds endowed with a Killing vector field. In other terms, we prove the existence of Killing graphs with prescribed mean curvature and prescribed contact angle along its boundary. These results may be useful for modeling stationary hypersurfaces under the influence of a nonhomogeneous gravitational field defined over an arbitrary Riemannian manifold.
引用
收藏
页码:407 / 424
页数:18
相关论文
共 50 条
  • [1] A BERNSTEIN PROBLEM IN WARPED PRODUCTS
    Aledo, Juan A.
    Rubio, Rafael M.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (02) : 699 - 704
  • [2] A Moser–Bernstein problem for Riemannian warped products
    Alma L. Albujer
    Jónatan Herrera
    Rafael M. Rubio
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [3] Multiplicity of solutions to the Yamabe equation on warped products
    Miguel Ruiz, Juan
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 138 : 44 - 54
  • [4] A non-existence result for compact Einstein warped products
    Mustafa, MT
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (47): : L791 - L793
  • [5] Some remarks on the existence of compact multiply Einstein warped products
    Dumitru, Dan
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (02)
  • [6] A Moser-Bernstein problem for Riemannian warped products
    Albujer, Alma L.
    Herrera, Jonatan
    Rubio, Rafael M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
  • [7] NONPARAMETRIC SOLUTIONS OF THE DESIGN FLOOD PROBLEM
    GRIFFITHS, GA
    HYDROLOGY AND WATER RESOURCES SYMPOSIUM 1989 : COMPARISONS IN AUSTRAL HYDROLOGY: PREPRINTS OF PAPERS, 1989, 89 : 216 - 222
  • [8] EXISTENCE OF SOLUTIONS FOR A MARTINGALE PROBLEM
    TRAKI, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 297 (06): : 353 - 356
  • [9] EXISTENCE OF SOLUTIONS FOR A NEUMANN PROBLEM
    Candito, Pasquale
    MATEMATICHE, 2005, 60 (02): : 433 - 438
  • [10] Generalized Solutions of the Capillary Problem
    Markus Scholz
    Journal of Mathematical Fluid Mechanics, 2004, 6 : 272 - 294