Model selection using wavelet decomposition and applications

被引:23
|
作者
Antoniadis, A
Gijbels, I
Gregoire, G
机构
[1] Univ Grenoble 1, Inst Informat & Math Appl Grenoble, Lab Modelisat & Calcul, F-38042 Grenoble, France
[2] Catholic Univ Louvain, Inst Stat, B-1348 Louvain, Belgium
关键词
consistency; hypothesis testing; minimum description length criterion; model selection; nonparametric regression; wavelet decomposition;
D O I
10.1093/biomet/84.4.751
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we discuss how to use wavelet decompositions to select a regression model. The methodology relies on a minimum description length criterion which is used to determine the number of nonzero coefficients in the vector of wavelet coefficients. Consistency properties of the selection rule are established and simulation studies reveal information on the distribution of the minimum description length selector. We then apply the selection rule to specific problems, including testing for pure white noise. The power of this test is investigated via simulation studies and the selection criterion is also applied to testing for no effect in nonparametric regression.
引用
收藏
页码:751 / 763
页数:13
相关论文
共 50 条
  • [1] Subset Selection Using Frequency Decomposition with Applications
    Tang, W. M.
    Yiu, K. F. C.
    Wong, H.
    [J]. INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2020, 19 (01) : 195 - 220
  • [2] A Multilevel Temporal Convolutional Network Model with Wavelet Decomposition and Boruta Selection for
    Tao, Lizhi
    He, Xinguang
    Li, Jiajia
    Yang, Dong
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2023, 24 (11) : 1991 - 2005
  • [3] Feature selection in SUMER spatial spectra using wavelet decomposition and ICA
    Sarro, L. M.
    Berihuete, A.
    [J]. CLASSIFICATION AND DISCOVERY IN LARGE ASTRONOMICAL SURVEYS, 2008, 1082 : 302 - +
  • [4] Stochastic simulation model for nonstationary time series using an autoregressive wavelet decomposition: Applications to rainfall and temperature
    Kwon, Hyun-Han
    Lall, Upmanu
    Khalil, Abedalrazq F.
    [J]. WATER RESOURCES RESEARCH, 2007, 43 (05)
  • [5] Image denoising using wavelet thresholding and model selection
    Zhong, S
    Cherkassky, V
    [J]. 2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2000, : 262 - 265
  • [6] Improvement of the Polar Motion Prediction Model Using Wavelet Decomposition
    Zhao, Danning
    Gao, Rui
    Lei, Yu
    [J]. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2019, 44 (12): : 1797 - 1801
  • [7] Wavelet Decomposition Layer Selection for the φ-OTDR Signal
    Chen, Yunfei
    Yu, Kaimin
    Wu, Minfeng
    Feng, Lei
    Zhang, Yuanfang
    Zhu, Peibin
    Chen, Wen
    Hao, Jianzhong
    [J]. PHOTONICS, 2024, 11 (02)
  • [8] Selection of Wavelet Decomposition Levels in ECG Filtering
    Gavrovska, Ana M.
    Jevtic, Dubravka R.
    Reljin, Branimir D.
    [J]. TELSIKS 2009, VOLS 1 AND 2, 2009, : 221 - 224
  • [9] Medical image denoising using optimal thresholding of wavelet coefficients with selection of the best decomposition level and mother wavelet
    Benhassine, Nasser Edinne
    Boukaache, Abdelnour
    Boudjehem, Djalil
    [J]. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2021, 31 (04) : 1906 - 1920
  • [10] Wavelet based recognition using model theory for feature selection
    Korona, Z
    Kokar, MM
    [J]. WAVELET APPLICATIONS III, 1996, 2762 : 256 - 266