A New Missing Data Imputation Algorithm Applied to Electrical Data Loggers

被引:20
|
作者
Crespo Turrado, Concepcion [1 ]
Sanchez Lasheras, Fernando [2 ]
Luis Calvo-Rolle, Jose [3 ]
Jose Pinon-Pazos, Andres [3 ]
de Cos Juez, Francisco Javier [4 ]
机构
[1] Univ Oviedo, Maintenance Dept, Oviedo 33007, Spain
[2] Univ Oviedo, Dept Construct & Mfg Engn, Gijon 33204, Spain
[3] Univ A Coruna, Dept Ingn Ind, La Coruna 15405, Spain
[4] Univ Oviedo, Prospecting & Exploitat Mines Dept, Oviedo 33004, Spain
关键词
missing data imputation; multivariate imputation by chained equations (MICE); Multivariate adaptive regression splines (MARS); quality of electric supply; voltage; current; power factor; ADAPTIVE REGRESSION SPLINES; CYANOTOXINS PRESENCE; SMART SENSOR; POWER; NETWORKS; STATE;
D O I
10.3390/s151229842
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Nowadays, data collection is a key process in the study of electrical power networks when searching for harmonics and a lack of balance among phases. In this context, the lack of data of any of the main electrical variables (phase-to-neutral voltage, phase-to-phase voltage, and current in each phase and power factor) adversely affects any time series study performed. When this occurs, a data imputation process must be accomplished in order to substitute the data that is missing for estimated values. This paper presents a novel missing data imputation method based on multivariate adaptive regression splines (MARS) and compares it with the well-known technique called multivariate imputation by chained equations (MICE). The results obtained demonstrate how the proposed method outperforms the MICE algorithm.
引用
收藏
页码:31069 / 31082
页数:14
相关论文
共 50 条
  • [1] A Hybrid Algorithm for Missing Data Imputation and Its Application to Electrical Data Loggers
    Crespo Turrado, Concepcion
    Sanchez Lasheras, Fernando
    Luis Calvo-Rolle, Jose
    Pinon-Pazos, Andres-Jose
    Melero, Manuel G.
    Javier de Cos Juez, Francisco
    [J]. SENSORS, 2016, 16 (09):
  • [2] A genetic algorithm for multivariate missing data imputation
    Carlos Figueroa-Garcia, Juan
    Neruda, Roman
    Hernandez-Perez, German
    [J]. INFORMATION SCIENCES, 2023, 619 : 947 - 967
  • [3] A new iterative fuzzy clustering algorithm for multiple imputation of missing data
    Nikfalazar, Sanaz
    Yeh, Chung-Hsing
    Bedingfield, Susan
    Khorshidi, Hadi A.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2017,
  • [4] IMPUTATION OF MISSING DATA
    Lunt, M.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2014, 73 : 49 - 49
  • [5] A New Approach for Missing Data Imputation in Big Data Interface
    Wang, Chunzhi
    Shakhovska, Nataliya
    Sachenko, Anatoliy
    Komar, Myroslav
    [J]. INFORMATION TECHNOLOGY AND CONTROL, 2020, 49 (04): : 541 - 555
  • [6] Collateral missing value imputation: a new robust missing value estimation algorithm for microarray data
    Sehgal, MSB
    Gondal, I
    Dooley, LS
    [J]. BIOINFORMATICS, 2005, 21 (10) : 2417 - 2423
  • [7] RadarTSR: A new algorithm for cellwise and rowwise outlier detection and missing data imputation
    Gonzalez-Cebrian, Alba
    Folch-Fortuny, Abel
    Arteaga, Francisco
    Ferrer, Alberto
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2024, 247
  • [8] Missing Data: data replacement and imputation
    Hutcheson, Graeme
    Pampaka, Maria
    [J]. JOURNAL OF MODELLING IN MANAGEMENT, 2012, 7 (02)
  • [9] A new analytical framework for missing data imputation and classification with uncertainty: Missing data imputation and heart failure readmission prediction
    Hu, Zhiyong
    Du, Dongping
    [J]. PLOS ONE, 2020, 15 (09):
  • [10] Multi-objective genetic algorithm for missing data imputation
    Lobato, Fabio
    Sales, Claudomiro
    Araujo, Igor
    Tadaiesky, Vincent
    Dias, Lilian
    Ramos, Leonardo
    Santana, Adamo
    [J]. PATTERN RECOGNITION LETTERS, 2015, 68 : 126 - 131