Kin2, the Budding Yeast Ortholog of Animal MARK/PAR-1 Kinases, Localizes to the Sites of Polarized Growth and May Regulate Septin Organization and the Cell Wall

被引:13
|
作者
Yuan, Si-Min [1 ]
Nie, Wen-Chao [1 ]
He, Fei [1 ]
Jia, Zhi-Wen [1 ]
Gao, Xiang-Dong [1 ,2 ]
机构
[1] Wuhan Univ, Coll Life Sci, Dept Microbiol, Wuhan 430072, Peoples R China
[2] Hubei Prov Cooperat Innovat Ctr Ind Fermentat, Wuhan, Peoples R China
来源
PLOS ONE | 2016年 / 11卷 / 04期
基金
中国国家自然科学基金;
关键词
SACCHAROMYCES-CEREVISIAE; PROTEIN-KINASE; CAENORHABDITIS-ELEGANS; ACTIN CYTOSKELETON; PLASMA-MEMBRANE; FISSION YEAST; CYCLE; EXOCYTOSIS; GTPASE; FAMILY;
D O I
10.1371/journal.pone.0153992
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
MARK/PAR-1 protein kinases play important roles in cell polarization in animals. Kin1 and Kin2 are a pair of MARK/PAR-1 orthologs in the budding yeast Saccharomyces cerevisiae. They participate in the regulation of secretion and ER stress response. However, neither the subcellular localization of these two kinases nor whether they may have other cellular functions is clear. Here, we show that Kin2 localizes to the sites of polarized growth in addition to localization on the plasma membrane. The localization to polarity sites is mediated by two targeting domains-TD1 and TD2. TD1 locates in the N-terminal region that spans the protein kinase domain whereas TD2 locates in the C-terminal end that covers the KA1 domain. We also show that an excess of Kin2 activity impaired growth, septin organization, and chitin deposition in the cell wall. Both TD1 and TD2 contribute to this function. Moreover, we find that the C-terminal region of Kin2 interacts with Cdc11, a septin subunit, and Pea2, a component of the polarisome that is known to play a role in septin organization. These findings suggest that Kin2 may play a role in the regulation of the septin cytoskeleton and the cell wall. Finally, we show that the C-terminal region of Kin2 interacts with Rho3, a Rho GTPase, whereas the N-terminal region of Kin2 interacts with Bmh1, a 14-3-3 protein. We speculate that Kin2 may be regulated by Bmh1, Rho3, or Pea2 in vivo. Our study provides new insight in the localization, function, and regulation of Kin2.
引用
收藏
页数:20
相关论文
共 2 条