Nonexistence of perfect permutation codes under the l∞-metric

被引:0
|
作者
Wang, Xiang [1 ]
Yin, Wenjuan [2 ]
Fu, Fang-Wei [3 ,4 ]
机构
[1] Natl Comp Network Emergency Response Tech Team Co, Beijing 100029, Peoples R China
[2] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
[3] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[4] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Permutation codes; l(infinity)-metric; Upper bounds; Perfect codes; ERROR-CORRECTION; ARRAYS; BOUNDS; SIZE;
D O I
10.1007/s00200-022-00556-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Permutation codes are studied due to their numerous applications in various applications, such as power line communications, block ciphers, and coding for storage. In this paper, we study perfect permutation codes in S-n, the set of all permutations on n elements, under the l(infinity)-metric. We present some nonexistence results on perfect t-error-correcting permutation codes in S-n, under the l(infinity)-metric for some t and n. More precisely, we prove that there does not exist a perfect t-error-correcting code in S, under the l(infinity)-metric for t and n satisfying 1 < t <= 3, 2t + 1 <= n or for t and n satisfying R2t+1 (n) = 0, 1, 2t, where 0 <= R-d (n) < d is the residue when dividing the positive integer n by the positive integer d.
引用
收藏
页码:377 / 391
页数:15
相关论文
共 50 条
  • [1] Nonexistence of perfect permutation codes under the ∞-metric
    Wang, Xiang
    Yin, Wenjuan
    Fu, Fang-Wei
    [J]. Applicable Algebra in Engineering, Communications and Computing, 2024, 35 (03): : 377 - 391
  • [2] Nonexistence of perfect permutation codes under the Kendall τ-metric
    Wang, Xiang
    Wang, Yuanjie
    Yin, Wenjuan
    Fu, Fang-Wei
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (11) : 2511 - 2531
  • [3] Nonexistence of Perfect Permutation Codes in the Ulam Metric
    Kong, Justin
    Hagiwara, Manabu
    [J]. PROCEEDINGS OF 2016 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA 2016), 2016, : 691 - 695
  • [4] NEW NONEXISTENCE RESULTS ON PERFECT PERMUTATION CODES UNDER THE HAMMING METRIC
    Wang, Xiang
    Yin, Wenjuan
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2023, 17 (06) : 1440 - 1452
  • [5] Perfect Permutation Codes with the Kendall's τ-Metric
    Buzaglo, Sarit
    Etzion, Tuvi
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 2391 - 2395
  • [6] ON THE NONEXISTENCE OF PERFECT AND NEARLY PERFECT CODES
    HAMMOND, P
    [J]. DISCRETE MATHEMATICS, 1982, 39 (01) : 105 - 109
  • [7] Perfect and Quasi-Perfect Codes Under the lp Metric
    Zhang, Tao
    Ge, Gennian
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (07) : 4325 - 4331
  • [8] New theoretical bounds and constructions of permutation codes under block permutation metric
    Xu, Zixiang
    Zhang, Yiwei
    Ge, Gennian
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (11) : 2625 - 2637
  • [9] New theoretical bounds and constructions of permutation codes under block permutation metric
    Zixiang Xu
    Yiwei Zhang
    Gennian Ge
    [J]. Designs, Codes and Cryptography, 2019, 87 : 2625 - 2637
  • [10] A MODIFICATION OF THE ELIAS-BOUND AND NONEXISTENCE THEOREMS FOR PERFECT CODES IN THE LEE-METRIC
    LEPISTO, T
    [J]. INFORMATION AND CONTROL, 1981, 49 (02): : 109 - 124