Low-molecular-weight and oligomeric components in secondary organic aerosol from the ozonolysis of cycloalkenes and α-pinene

被引:260
|
作者
Gao, S
Keywood, M
Ng, NL
Surratt, J
Varutbangkul, V
Bahreini, R
Flagan, RC
Seinfeld, JH [1 ]
机构
[1] CALTECH, Dept Environm Sci & Engn, Pasadena, CA 91125 USA
[2] CALTECH, Dept Chem Engn, Pasadena, CA 91125 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2004年 / 108卷 / 46期
关键词
D O I
10.1021/jp047466e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The composition of secondary organic aerosol (SOA) from the ozonolysis of C-5-C-8 cycloalkenes and alpha-pinene, as well as the effects of hydrocarbon precursor structure and particle-phase acidity on SOA formation, have been investigated by a series of controlled laboratory chamber experiments. A liquid chromatography-mass spectrometer and an ion trap mass spectrometer are used concurrently to identify and to quantify SOA components with molecular weights up to 1600 Da. Diacids, carbonyl-containing acids, diacid alkyl esters, and hydroxy diacids are the four major classes of low-molecular-weight (MW < 250 Da) components in the SOA; together they comprise 42-83% of the total SOA mass, assuming an aerosol density of 1.4 g/cm(3). In addition, oligomers (MW > 250 Da) are found to be present in all SOA. Using surrogate standards, it is estimated that the mass fraction of oligomers in the total SOA is at least 10% for the cycloalkene systems (with six or more carbons) and well over 50% for the alpha-pinene system. Higher seed particle acidity is found to lead to more rapid oligomer formation and, ultimately, to higher SOA yields. Because oligomers are observed to form even in the absence of seed particles, organic acids produced from hydrocarbon oxidation itself may readily promote acid catalysis and oligomer formation. The distinct effects of carbon numbers, substituent groups, and isomeric structures of the precursor hydrocarbons on the composition and yield of SOA formed are also discussed.
引用
收藏
页码:10147 / 10164
页数:18
相关论文
共 50 条
  • [1] Secondary organic aerosol formation from the ozonolysis of cycloalkenes and related compounds
    Keywood, MD
    Varutbangkul, V
    Bahreini, R
    Flagan, RC
    Seinfeld, JH
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (15) : 4157 - 4164
  • [2] Low-molecular weight and oligomeric components in secondary organic aerosol from the photooxidation of p-xylene
    Huang, Ming-Qiang
    Zhang, Wei-Jun
    Hao, Li-Qing
    Wang, Zhen-Ya
    Zhao, Wen-Wu
    Gu, Xue-Jun
    Fang, Li
    [J]. JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2008, 55 (02) : 456 - 463
  • [3] Mechanisms for the formation of secondary organic aerosol components from the gas-phase ozonolysis of α-pinene
    Ma, Yan
    Russell, Andrew T.
    Marston, George
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (29) : 4294 - 4312
  • [4] Characterization of secondary organic aerosol generated from ozonolysis of α-pinene mixtures
    Amin, Hardik S.
    Hatfield, Meagan L.
    Hartz, Kara E. Huff
    [J]. ATMOSPHERIC ENVIRONMENT, 2013, 67 : 323 - 330
  • [5] Factors controlling the evaporation of secondary organic aerosol from α-pinene ozonolysis
    Yli-Juuti, Taina
    Pajunoja, Aki
    Tikkanen, Olli-Pekka
    Buchholz, Angela
    Faiola, Celia
    Vaisanen, Olli
    Hao, Liqing
    Kari, Eetu
    Perakyla, Otso
    Garmash, Olga
    Shiraiwa, Manabu
    Ehn, Mikael
    Lehtinen, Kari
    Virtanen, Annele
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (05) : 2562 - 2570
  • [6] Integrating phase and composition of secondary organic aerosol from the ozonolysis of α-pinene
    Kidd, Carla
    Perraud, Veronique
    Wingen, Lisa M.
    Finlayson-Pitts, Barbara J.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (21) : 7552 - 7557
  • [7] Secondary organic aerosol from α-pinene ozonolysis in dynamic chamber system
    Chen, X.
    Hopke, P. K.
    [J]. INDOOR AIR, 2009, 19 (04) : 335 - 345
  • [8] Ozonolysis of α-pinene:: parameterization of secondary organic aerosol mass fraction
    Pathak, R. K.
    Presto, A. A.
    Lane, T. E.
    Stanier, C. O.
    Donahue, N. M.
    Pandis, S. N.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (14) : 3811 - 3821
  • [9] Temperature and humidity dependence of secondary organic aerosol yield from the ozonolysis of β-pinene
    von Hessberg, C.
    von Hessberg, P.
    Poeschl, U.
    Bilde, M.
    Nielsen, O. J.
    Moortgat, G. K.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (11) : 3583 - 3599
  • [10] Effects of NOx on the molecular composition of secondary organic aerosol formed by the ozonolysis and photooxidation of α-pinene
    Park, Jun-Hyun
    Bin Babar, Zaeem
    Baek, Sun Jong
    Kim, Hyun Sik
    Lim, Ho-Jin
    [J]. ATMOSPHERIC ENVIRONMENT, 2017, 166 : 263 - 275