Integral operators on the halfspace in generalized Lebesgue spaces LP(.), part II

被引:13
|
作者
Diening, L [1 ]
Ruzicka, M [1 ]
机构
[1] Univ Freiburg, Math Inst, Sect Appl Math, D-79104 Freiburg, Germany
关键词
Calderon-Zygmund theorem; singular integral operator; generalized Lebesgue spaces L-P(.);
D O I
10.1016/j.jmaa.2004.05.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we generalize, under slightly more restrictive conditions on the kernel K, the classical theorem on halfspace estimates of Agmon, Douglis and Nirenberg [Comm. Pure Appl. Math. 12 (1959) 623-727] to generalized Lebesgue spaces L-p(.). In particular this yields W-2,W-p(.)-estimates in R-greater than or equal to(d+1) for the Laplace equation and the Stokes system. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:572 / 588
页数:17
相关论文
共 50 条