Improve or Approximation of Nuclear Reaction Cross Section Data Using Artificial Neural Network

被引:0
|
作者
Capali, Veli [1 ]
机构
[1] Usak Univ, TR-64200 Usak, Turkey
关键词
Nuclear reaction; Reaction cross section; Artificial neural network;
D O I
10.1007/978-3-030-36178-5_82
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study; discusses the using artificial neural networks for approximation of data such as the nuclear reaction cross sections data. The rate of approximation of the fitting criteria is determined by using the experimental and evaluated data. The some reactions cross-section are calculated from data obtained using neural networks. The results show the effectiveness and applicability of this new technique in the calculation of the some nuclear reactions.
引用
收藏
页码:935 / 939
页数:5
相关论文
共 50 条
  • [1] Improving the ability of function approximation of neural network using patulous cross section method
    Tang, XJ
    Liu, JH
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 1752 - 1756
  • [2] A model of an artificial neural network for frequency dependence of radar cross section
    Liu, HW
    Antar, YMM
    Wu, ZD
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1999, 20 (05) : 315 - 318
  • [3] Using Artificial Neural Network in Nuclear Spin Echo Experiments
    Polulyakh, S. N.
    Gorbovanov, A. I.
    TECHNICAL PHYSICS LETTERS, 2019, 45 (06) : 598 - 600
  • [4] Using Artificial Neural Network in Nuclear Spin Echo Experiments
    S. N. Polulyakh
    A. I. Gorbovanov
    Technical Physics Letters, 2019, 45 : 598 - 600
  • [5] Classification of Robotic Data using Artificial Neural Network
    Gopalapillai, Radhakrishnan
    Vidhya, J.
    Gupta, Deepa
    Sudarshan, T. S. B.
    2013 IEEE RECENT ADVANCES IN INTELLIGENT COMPUTATIONAL SYSTEMS (RAICS), 2013, : 333 - 337
  • [6] Reconstruction of SPECT data using an artificial neural network
    Knoll, P
    Mirzaei, S
    Neumann, M
    Koriska, K
    Köhn, H
    RADIOACTIVE ISOTOPES IN CLINICAL MEDICINE AND RESEARCH XXIII, 1999, : 307 - 312
  • [7] REPRESENTING NUCLEAR CRITICALITY EXCURSION EXPERIMENT DATA BY AN ARTIFICIAL NEURAL NETWORK
    Angelo, Peter L.
    NUCLEAR TECHNOLOGY, 2015, 189 (03) : 219 - 240
  • [8] Modeling of section forces in a continuous beam using artificial neural network
    Gupta, M.K.
    Sarkar, Kaustav
    Journal of Structural Engineering (Madras), 2009, 35 (06): : 416 - 422
  • [9] Evolutionary Approach for Approximation Of Artificial Neural Network
    Pal, Sangita
    Vipsita, Swati
    Patra, Prashanta Kumar
    2010 IEEE 2ND INTERNATIONAL ADVANCE COMPUTING CONFERENCE, 2010, : 172 - +
  • [10] Distribution Network Fault Section Identification and Fault Location Using Artificial Neural Network
    Dashtdar, Masoud
    Dashti, Rahman
    Shaker, Hamid Reza
    2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONIC ENGINEERING (ICEEE), 2018, : 273 - 278