Eigenvalue and eigenvector computation for discrete and continuous structures composed of viscoelastic materials

被引:33
|
作者
Singh, Kumar Vikram [1 ]
机构
[1] Miami Univ, Dept Mech & Mfg Engn, 650 E High St,GAR 056L, Oxford, OH 45056 USA
关键词
Nonlinear eigenvalue problems; Left and right eigenvectors; Numerical method; Viscoelastic material; Discrete and continuous systems; Sensitivity; EIGENSOLUTION DERIVATIVES; NUMERICAL-METHOD; VIBRATION; SYSTEMS; MATRIX; SENSITIVITIES; EIGENPROBLEM; ASSIGNMENT; ALGORITHMS; DYNAMICS;
D O I
10.1016/j.ijmecsci.2016.03.009
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Both discrete and continuous structures, with frequency and/or temperature dependent viscoelastic elements, gives rise to a nonlinear eigenvalue problem. An accurate computation of eigenvalues (natural frequencies) and eigenvectors (mode shapes) is essential for control, design sensitivities, and optimization studies. In this paper, a pth order approximation of a general nonlinear eigenvalue problem is formulated. A numerical approach to simultaneously compute the eigenvalues and associated left and right eigenvectors is presented. This method can be used for both discrete and continuous systems with viscoelastic elements. Numerical examples are presented here to demonstrate its effectiveness and for the validation purposes. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:127 / 137
页数:11
相关论文
共 50 条
  • [1] An efficient technique for the computation of eigenvalue and eigenvector derivatives of cyclic structures
    Irwanto, B
    Hardtke, HJ
    Pawandenat, D
    COMPUTERS & STRUCTURES, 2003, 81 (24-25) : 2395 - 2400
  • [2] Observations on the computation of eigenvalue and eigenvector Jacobians
    Liounis, Andrew J.
    Christian, John A.
    Robinson, Shane B.
    Algorithms, 2019, 12 (02)
  • [3] Observations on the Computation of Eigenvalue and Eigenvector Jacobians
    Liounis, Andrew J.
    Christian, John A.
    Robinson, Shane B.
    ALGORITHMS, 2019, 12 (12)
  • [4] A subspace preconditioning algorithm for eigenvector/eigenvalue computation
    Bramble, JH
    Pasciak, JE
    Knyazev, AV
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 6 (02) : 159 - 189
  • [5] Computation of eigenvalue and eigenvector derivatives for a general complexvalued eigensystem
    Van der Aa, N. P.
    Ter Morsche, H. G.
    Mattheij, R. R. M.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2007, 16 : 300 - 314
  • [6] EIGENVALUE AND EIGENVECTOR DECOMPOSITION OF DISCRETE FOURIER-TRANSFORM
    MCLELLAN, JH
    PARKS, TW
    IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, 1972, AU20 (01): : 66 - &
  • [7] Scalable eigenvector computation for the non-symmetric eigenvalue problem
    Schwarz, Angelika
    Karlsson, Lars
    PARALLEL COMPUTING, 2019, 85 : 131 - 140
  • [8] COMMENTS ON EIGENVECTOR AND EIGENVALUE DECOMPOSITION OF DISCRETE FOURIER-TRANSFORM
    MCCLELLAN, JH
    IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, 1973, AU21 (01): : 65 - 65
  • [9] Robust parallel eigenvector computation for the non-symmetric eigenvalue problem
    Schwarz, Angelika
    Mikkelsen, Carl Christian Kjelgaard
    Karlsson, Lars
    PARALLEL COMPUTING, 2020, 100
  • [10] Discrete spectral modelling of continuous structures with fractional derivative viscoelastic behaviour
    Catania, Giuseppe
    Sorrentino, Silvio
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCE AND INFORMATION IN ENGINEERING CONFERENCE, VOL 1, PTS A-C, 2008, : 375 - 384