Contribution of abscisic acid to aromatic volatiles in cherry tomato (Solanum lycopersicum L.) fruit during postharvest ripening

被引:58
|
作者
Wu, Qiong [1 ]
Tao, Xiaoya [1 ]
Ai, Xinzi [1 ]
Luo, Zisheng [1 ]
Mao, Linchun [1 ]
Ying, Tiejin [1 ]
Li, Li [1 ]
机构
[1] Zhejiang Univ, Coll Biosyst Engn & Food Sci, Agr Minist Postharvest Handling Agroprod, Fuli Inst Food Sci,Zhejiang Key Lab Agrofood Proc, Hangzhou 310058, Zhejiang, Peoples R China
关键词
Tomato fruit; Abscisic acid; Aromatic volatiles; Fatty acids; Carotenoids; Phenolics; Branched-chain amino acids; TRIGGERING ETHYLENE BIOSYNTHESIS; GENE-EXPRESSION; AMINO-ACIDS; FLAVOR; CHAIN; BIOCHEMISTRY; SUPPRESSION; METABOLISM; CATABOLISM; PROTEINS;
D O I
10.1016/j.plaphy.2018.06.039
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Fruit aroma development depends on ripening. Abscisic acid (ABA) has been reported to be involved in the regulation of tomato fruit ripening. In the present study, the effects of exogenous ABA on aromatic volatiles in tomato fruit during postharvest ripening were studied. The results showed that exogenous ABA accelerated color development and ethylene production as well as the accumulation of carotenoids, total phenolics and linoleic acid in tomato fruit during ripening. Moreover, exogenous ABA increased the accumulation of volatile compounds such as 1-peten-3-one (2.06-fold), beta-damascenone (1.64-fold), benzaldehyde (3.29-fold) and benzyl cyanide (4.15-fold); induced the expression of key genes implicated in the biosynthesis pathways of aromatic volatiles, including TomloxC, HPL, ADH2, LeCCD1B and SIBCAT1 (the values of the log(2) fold changes ranged from -3.02 to 2.97); and promoted the activities of lipoxygenase (LOX), hydroperoxide lyase (HPL) and alcohol dehydrogenase (ADH). In addition, the results of promoter analyses revealed that cis-acting elements involved in ABA responsiveness (ABREs) exist in 8 of the 12 key genes involved in volatile biosynthesis, suggesting that ABA potentially affects aromatic volatile emissions via the regulation of gene expression profiles.
引用
收藏
页码:205 / 214
页数:10
相关论文
共 50 条
  • [1] Effect of exogenous auxin on aroma volatiles of cherry tomato (Solanum lycopersicum L.) fruit during postharvest ripening
    Wu, Qiong
    Tao, Xiaoya
    Ai, Xinzi
    Luo, Zisheng
    Mao, Linchun
    Ying, Tiejin
    Li, Li
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2018, 146 : 108 - 116
  • [2] Exogenous abscisic acid regulates primary metabolism in postharvest cherry tomato fruit during ripening
    Tao, Xiaoya
    Wu, Qiong
    Huang, Suqing
    Zhu, Beiwei
    Chen, Feng
    Liu, Bin
    Cai, Luyun
    Mao, Linchun
    Luo, Zisheng
    Li, Li
    Ying, Tiejin
    SCIENTIA HORTICULTURAE, 2022, 299
  • [3] Effect of selenium enrichment on metabolism of tomato (Solanum lycopersicum) fruit during postharvest ripening
    Puccinelli, Martina
    Malorgio, Fernando
    Terry, Leon A.
    Tosetti, Roberta
    Rosellini, Irene
    Pezzarossa, Beatrice
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2019, 99 (05) : 2463 - 2472
  • [4] Ripening process of Solanum lycopersicum L. (tomato) with ethylene
    Parrales, Luis Daniel Garcia
    Meza, Leonardo Andres Saltos
    Briones, Gabriel Alfonso Burgos
    Demera, Maria Hipatia Delgado
    Palacios, Carlos Alfredo Cedeno
    AFINIDAD, 2023, 80 (598) : 78 - 79
  • [5] Quantitative Comparison of Free and Bound Volatiles of Two Commercial Tomato Cultivars (Solanum lycopersicum L.) during Ripening
    Ortiz-Serrano, Pepa
    Vicente Gil, Jose
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2010, 58 (02) : 1106 - 1114
  • [6] Differences in the cell morphology and microfracture behaviour of tomato fruit (Solanum lycopersicum L.) tissues during ripening
    Liu, Zhengguang
    Li, Zhiguo
    Yue, Tianli
    Diels, Elien
    Yang, Yougang
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2020, 164
  • [7] Physiological and biochemical changes in tomato fruit (Solanum lycopersicum L.) during growth and ripening cultivated in Vietnam
    Le Van Trong
    Le Quy Tuong
    Bui Bao Thinh
    Nguyen Tuan Khoi
    Vu Thi Trong
    BIOSCIENCE RESEARCH, 2019, 16 (02): : 1736 - 1744
  • [8] The role of gibberellins in the mitigation of chilling injury in cherry tomato (Solanum lycopersicum L.) fruit
    Ding, Yang
    Sheng, Jiping
    Li, Shuying
    Nie, Ying
    Zhao, Jinhong
    Zhu, Zhen
    Wang, Zhidong
    Tang, Xuanming
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2015, 101 : 88 - 95
  • [9] Ethylene and Auxin: Hormonal Regulation of Volatile Compound Production During Tomato (Solanum lycopersicum L.) Fruit Ripening
    Tobaruela, Eric de Castro
    Gomes, Bruna Lima
    Bonato, Vanessa Caroline de Barros
    Lima, Elis Silva de
    Freschi, Luciano
    Purgatto, Eduardo
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [10] CAROTENOID CONTENT DURING TOMATO (SOLANUM LYCOPERSICUM L.) FRUIT RIPENING IN TRADITIONAL AND HIGH-PIGMENT CULTIVARS
    Lenucci, M. S.
    Caccioppola, A.
    Durante, M.
    Serrone, L.
    De Caroli, M.
    Piro, G.
    Dalessandro, G.
    ITALIAN JOURNAL OF FOOD SCIENCE, 2009, 21 (04) : 461 - 472