Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis

被引:175
|
作者
Wu, Sainan [1 ]
Shi, Junping [2 ]
Wu, Boying [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Reaction diffusion system with prey-taxis; Predator-prey model; Global existence; Boundedness; Uniform persistence; PARABOLIC CHEMOTAXIS SYSTEM; KELLER-SEGEL SYSTEM; PATTERN-FORMATION; BLOW-UP; BOUNDEDNESS; DYNAMICS; BIFURCATION; STABILITY; MOTILITY; GROWTH;
D O I
10.1016/j.jde.2015.12.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proves the global existence and boundedness of solutions to a general reaction diffusion predator prey system with prey-taxis defined on a smooth bounded domain with no-flux boundary condition. The result holds for domains in arbitrary spatial dimension and small prey-taxis sensitivity coefficient. This paper also proves the existence of a global attractor and the uniform persistence of the system under some additional conditions. Applications to models from ecology and chemotaxis are discussed. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:5847 / 5874
页数:28
相关论文
共 50 条
  • [1] Global solution of a diffusive predator-prey model with prey-taxis
    Wang, Jianping
    Wang, Mingxin
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (10) : 2676 - 2694
  • [2] Global existence of a diffusive predator-prey model with prey-stage structure and prey-taxis
    Mi, Ying-Yuan
    Song, Cui
    Wang, Zhi-Cheng
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (03):
  • [3] Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis
    Tao, Youshan
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (03) : 2056 - 2064
  • [4] Global existence of a diffusive predator–prey model with prey-stage structure and prey-taxis
    Ying-Yuan Mi
    Cui Song
    Zhi-Cheng Wang
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [5] GLOBAL GENERALIZED SOLUTIONS TO A THREE SPECIES PREDATOR-PREY MODEL WITH PREY-TAXIS
    Wang, Xin
    Li, Ruijing
    Shi, Yu
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (12): : 7021 - 7042
  • [6] Predator-prey model with prey-taxis and diffusion
    Chakraborty, Aspriha
    Singh, Manmohan
    Lucy, David
    Ridland, Peter
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2007, 46 (3-4) : 482 - 498
  • [7] Bifurcations of a diffusive predator-prey model with prey-stage structure and prey-taxis
    Li, Yan
    Lv, Zhiyi
    Fan, Xiuzhen
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (18) : 18592 - 18604
  • [8] PATTERN FORMATION IN DIFFUSIVE PREDATOR-PREY SYSTEMS WITH PREDATOR-TAXIS AND PREY-TAXIS
    Wang, Jinfeng
    Wu, Sainan
    Shi, Junping
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (03): : 1273 - 1289
  • [9] Steady states of a diffusive predator-prey model with prey-taxis and fear effect
    Cao, Jianzhi
    Li, Fang
    Hao, Pengmiao
    [J]. BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [10] Bifurcation analysis of a diffusive predator-prey model with hyperbolic mortality and prey-taxis
    Li, Yan
    Lv, Zhiyi
    Zhang, Fengrong
    Hao, Hui
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024, 17 (01)