Torsion Type Invariants of Singularities

被引:1
|
作者
Fan, Huijun [1 ]
Fang, Hao [2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
Singularity; Schrodinger operator; Index; Torsion; HOLOMORPHIC DETERMINANT BUNDLES; 2; LANDAU-GINZBURG; ANALYTIC-TORSION; R-TORSION; FORMS; GEOMETRY; METRICS;
D O I
10.1007/s10013-021-00510-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inspired by the LG/CY correspondence, we study the local index theory of the Schrodinger operator associated to a singularity defined on C-n by a quasi-homogeneous polynomial f. Under some mild assumption to f, we show that the small time heat kernel expansion of the corresponding Schrodinger operator exists and is a series of fractional powers of time t. Then we prove a local index formula which expresses the Milnor number of f by a Gaussian type integration. The heat kernel expansion provides the spectral invariants of f. Furthermore, we can define the torsion type invariants associated to a homogeneous singularity. The spectral invariants provide another way to classify the singularity.
引用
收藏
页码:381 / 432
页数:52
相关论文
共 50 条
  • [1] Torsion Type Invariants of Singularities
    Huijun Fan
    Hao Fang
    Vietnam Journal of Mathematics, 2021, 49 : 381 - 432
  • [2] SINGULARITIES AND INVARIANTS
    SIKLOS, STC
    GENERAL RELATIVITY AND GRAVITATION, 1979, 10 (12) : 1003 - 1004
  • [3] Torsion Invariants
    Kammeyer, Holger
    INTRODUCTION TO L2-INVARIANTS, 2019, 2247 : 127 - 163
  • [4] TORSION SINGULARITIES
    NESTER, JM
    ISENBERG, J
    PHYSICAL REVIEW D, 1977, 15 (08): : 2078 - 2087
  • [5] SINGULARITIES OF RIEMANNIAN INVARIANTS
    RAKHIMOV, AK
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1993, 27 (01) : 39 - 50
  • [6] Invariants, singularities and horizons
    MacCallum, Malcolm A. H.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2019, 28 (16):
  • [7] Basic Invariants for Singularities
    Cossart, Vincent
    Jannsen, Uwe
    Saito, Shuji
    DESINGULARIZATION: INVARIANTS AND STRATEGY: APPLICATION TO DIMENSION 2, 2020, 2270 : 15 - 36
  • [8] TORSION INVARIANTS FOR FAMILIES
    Goette, Sebastian
    ASTERISQUE, 2009, (328) : 161 - 206
  • [9] CONICAL SINGULARITIES AND TORSION
    TOD, KP
    CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (05) : 1331 - 1339
  • [10] SINGULARITIES IN SPACETIMES WITH TORSION
    DEANDRADE, LCG
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1990, 29 (09) : 997 - 1001