An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery

被引:1
|
作者
He, Lin [1 ]
Wang, Yangyang [2 ]
Wei, Yujiang [2 ]
Wang, Mingwei [2 ]
Hu, Xiaosong [3 ]
Shi, Qin [2 ]
机构
[1] HeFei Univ Technol, Lab Automot Intelligence & Electrificat, Hefei 230009, Peoples R China
[2] HeFei Univ Technol, Sch Automot & Transportat Engn, Hefei 230009, Peoples R China
[3] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
关键词
State of charge; Fractional order model; Battery management system; Unscented Kalman filter; Battery electric vehicle;
D O I
10.1016/j.energy.2021.122627
中图分类号
O414.1 [热力学];
学科分类号
摘要
The key issue of the model-based state of charge estimation approach is the accuracy of the battery model. In this paper, a fractional order model is built to simulate the electrochemistry dynamics of lithium-ion battery, whose model parameters are identified by adaptive genetic algorithm. Based on the computation simplification of central difference algorithm, an adaptive central difference Kalman filter by fractional order model is designed to estimate the state of charge. The designed approach is modelled by simulink and translated into C code, and then embedded in the battery management system for the validation by two dynamic cycles. Comparing experiments adopt two approaches, i.e. the central difference Kalman filter by fractional order model, the adaptive central difference Kalman filter by Thevenin model. Experimental results indicate that the designed approach has the better accuracy and robustness, and also show that fractional order model is more accurate than Thevenin model. With respect ot the ability to deal with noise, the robustness of the designed approach is verified by adding artificial noise. Experimental results show that the proposed approach has the best robustness to noise. Therefore, the proposed approach is a good candidate for the state of charge estimation in engineering practice.(c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A State of Charge Estimation Approach Based on Fractional Order Adaptive Extended Kalman Filter for Lithium-ion Batteries
    Xu, Meng'en
    Zhu, Qiao
    Zheng, Meng'qian
    [J]. PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 271 - 276
  • [2] State of Charge Estimation of Lithium-Ion Batteries with Adaptive Square Root Central Difference Kalman Filter
    Du, Hongbo
    Yuan, Yuan
    Zheng, Wei
    Zhu, Lijun
    [J]. ADVANCED THEORY AND SIMULATIONS, 2024,
  • [3] Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery
    Zheng Hong
    Liu Xu
    Wei Min
    [J]. CHINESE PHYSICS B, 2015, 24 (09)
  • [4] Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery
    郑宏
    刘煦
    魏旻
    [J]. Chinese Physics B, 2015, (09) : 585 - 591
  • [5] State of charge estimation of Lithium-ion battery using an improved fractional-order extended Kalman filter
    Solomon, Oluwole Olalekan
    Zheng, Wei
    Chen, Junxiong
    Qiao, Zhu
    [J]. JOURNAL OF ENERGY STORAGE, 2022, 49
  • [6] State of charge estimation of lithium-ion battery with an adaptive fractional-order cubature Kalman filter considering initial value problem
    Chai, Haoyu
    Gao, Zhe
    Jiao, Zhiyuan
    Song, Dandan
    [J]. JOURNAL OF ENERGY STORAGE, 2024, 84
  • [7] State of Charge Estimation for Lithium-Ion Batteries Based on an Adaptive Fractional-Order Cubature Kalman Filter
    Chai, Haoyu
    Gao, Zhe
    Miao, Yue
    Jiao, Zhiyuan
    [J]. ADVANCED THEORY AND SIMULATIONS, 2023, 6 (07)
  • [8] A state of charge estimation method for lithium-ion batteries based on fractional order adaptive extended kalman filter
    Zhu, Qiao
    Xu, Mengen
    Liu, Weiqun
    Zheng, Mengqian
    [J]. ENERGY, 2019, 187
  • [9] Estimation of State of Charge for Lithium-Ion Battery Based on Finite Difference Extended Kalman Filter
    Cheng, Ze
    Lv, Jikao
    Liu, Yanli
    Yan, Zhihao
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [10] A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty
    Li, Yanwen
    Wang, Chao
    Gong, Jinfeng
    [J]. ENERGY, 2016, 109 : 933 - 946