Boltzmann Finite-Difference Time-Domain Method Research Electromagnetic Wave Oblique Incidence into Plasma

被引:8
|
作者
Liu, Jian-Xiao [1 ,2 ]
Yang, Ze-Kun [3 ]
Ju, Lu [2 ]
Pan, Lei-Qing [4 ]
Xu, Zhi-Gang [5 ]
Yang, Hong-Wei [2 ]
机构
[1] Hengshui Univ, Sch Elect & Informat Engn, Hengshui 053000, Hebei, Peoples R China
[2] Nanjing Agr Univ, Dept Phys, Coll Sci, Nanjing 210095, Jiangsu, Peoples R China
[3] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China
[4] Nanjing Agr Univ, Coll Food Sci & Technol, Nanjing 210095, Jiangsu, Peoples R China
[5] Nanjing Agr Univ, Coll Agr, Nanjing 210095, Jiangsu, Peoples R China
关键词
Boltzmann equation; Distribution function; Finite-difference time-domain (FDTD); Oblique incidence; Plasma; MAGNETIZED PLASMA; FDTD ANALYSIS; PROPAGATION; SCHEME;
D O I
10.1007/s11468-017-0681-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Boltzmann equation is carried out to study the micromechanism of interaction between electromagnetic wave and plasma. The Boltzmann-FDTD iteration formula that is about electromagnetic wave obliquely incident into plasma under one-dimensional case is deduced. The reflection coefficient and transmission coefficient of the plasma flat are calculated when the electromagnetic wave incidents into plasma medium at different incident angles. The correctness of the algorithm is proved through some examples in this paper. The change law and mechanism of the electromagnetic wave energy, the reflection coefficient, and incidence coefficient with the changing of the incident angle are analyzed. The evolution law when the distribution function of particles of plasma is acting with electromagnetic wave is study. This work will help us to study the macro and micro relationship about plasma matters in the future.
引用
收藏
页码:1699 / 1704
页数:6
相关论文
共 50 条
  • [1] Boltzmann Finite-Difference Time-Domain Method Research Electromagnetic Wave Oblique Incidence into Plasma
    Jian-Xiao Liu
    Ze-Kun Yang
    Lu Ju
    Lei-Qing Pan
    Zhi-Gang Xu
    Hong-Wei Yang
    [J]. Plasmonics, 2018, 13 : 1699 - 1704
  • [2] Analysis of Periodic Structures at Oblique Incidence by Iterated Finite-Difference Time-Domain Method
    Shen, Chenyang
    Fang, Ming
    Huang, Zhixiang
    Wu, Xianliang
    [J]. 2015 ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), VOLS 1-3, 2015,
  • [3] A novel finite-difference time-domain scheme for electromagnetic scattering by stratified anisotropic plasma under oblique incidence condition
    Yang Li-Xia
    Xie Ying-Tao
    Kong Wa
    Yu Ping-Ping
    Wang Gang
    [J]. ACTA PHYSICA SINICA, 2010, 59 (09) : 6089 - 6095
  • [4] Analysis of the oblique incidence of periodic structures in a sound field by the finite-difference time-domain method
    Takemura, Miho
    Toyoda, Masahiro
    [J]. APPLIED ACOUSTICS, 2020, 167
  • [5] ELECTROMAGNETIC MODELING USING THE FINITE-DIFFERENCE TIME-DOMAIN METHOD
    DUCEAU, E
    [J]. RECHERCHE AEROSPATIALE, 1994, (05): : 301 - 317
  • [6] Iterative technique for analysis of periodic structures at oblique incidence in the finite-difference time-domain method
    Valuev, Ilya
    Deinega, Alexei
    Belousov, Sergei
    [J]. OPTICS LETTERS, 2008, 33 (13) : 1491 - 1493
  • [7] A research on the electromagnetic properties of Plasma Photonic Crystal based on the Symplectic Finite-Difference Time-Domain method
    Gao, Ying-Jie
    Yang, Hong-Wei
    Wang, Guang-Bin
    [J]. OPTIK, 2016, 127 (04): : 1838 - 1841
  • [8] Three dimensional modeling of electromagnetic wave using finite-difference time-domain method
    Sanada, Y
    Ashida, Y
    [J]. ENGINEERING AND ENVIRONMENTAL GEOPHYSICS FOR THE 21ST CENTURY, 1997, : 292 - 297
  • [9] THE FINITE-DIFFERENCE TIME-DOMAIN METHOD FOR NUMERICAL MODELING OF ELECTROMAGNETIC-WAVE INTERACTIONS
    TAFLOVE, A
    UMASHANKAR, KR
    [J]. ELECTROMAGNETICS, 1990, 10 (1-2) : 105 - 126
  • [10] New scheme for introducing an oblique incidence plane wave to layered media in finite-difference time-domain
    Jiang Yan-Nan
    Ge De-Biao
    [J]. ACTA PHYSICA SINICA, 2008, 57 (10) : 6283 - 6289