Inverse Identification of Virtual Material Parameters Using Surface Response Methodology

被引:2
|
作者
Cui, Fangyuan [1 ]
Hua, Dengxin [1 ]
Li, Pengyang [1 ]
Lu, Shikun [1 ]
Li, Yan [1 ]
Kong, Lingfei [1 ]
机构
[1] Xian Univ Technol, Sch Mech & Precis Instrument Engn, Xian 710048, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
THIN-LAYER ELEMENT; BOLTED JOINTS; MODEL; INTERFACES; CONTACT;
D O I
10.1155/2018/7678219
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The virtual material model is now widely applied for modeling the dynamical performance of assembled structures since it can effectively represent the complicated contact behavior of joint interfaces despite being relatively simple to create. In this study, a virtual material model is adopted for modeling the dominant physics of a bolted joint subject to a set of pretightening conditions. The unknown virtual material parameters are acquired by an inverse identification procedure that uses the surface response methodology. The greatest advantage of this approach is the ease with which it acquires the joint parameters without taking apart a built-up structure to do special measurements on each separated component. Intricate theoretical calculations can also be avoided when this method is used. This study addresses the responses of virtual material parameters under different pretightening considerations. Predictions based on the identified virtual material parameters are compared with the corresponding results obtained using the analytical method. The correlation between the two sets of results at all preload levels is promising, which indicates the successful identification of the virtual material parameters.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Inverse optimization and identification method for virtual material parameters of joints
    Cui, Fang-Yuan
    Hua, Deng-Xin
    Li, Yan
    Li, Peng-Yang
    [J]. Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2019, 32 (02): : 215 - 223
  • [2] Material parameters identification: An inverse modeling methodology applicable for thermoplastic materials
    Polanco-Loria, M.
    Daiyan, H.
    Grytten, F.
    [J]. POLYMER ENGINEERING AND SCIENCE, 2012, 52 (02): : 438 - 448
  • [3] Inverse identification of material parameters of titanium alloy TB5 based on response surface methodology and quasi-Newton method
    Sun, Yong-Na
    Wan, Min
    Wu, Xiang-Dong
    [J]. ADVANCED COMPOSITE MATERIALS, PTS 1-3, 2012, 482-484 : 2012 - 2016
  • [4] Identification of the periodontal ligament material parameters using response surface method
    Song, Yang
    Gao, Jinglan
    Qi, Chenxi
    Liu, Dehai
    Xiang, Hongbiao
    Zhang, Mian
    Yang, Xiuping
    Zhang, Chunqiu
    [J]. MEDICAL ENGINEERING & PHYSICS, 2023, 114
  • [5] Inverse identification of flow stress in metal cutting process using Response Surface Methodology
    Malakizadi, Amir
    Cedergren, Stefan
    Sadik, Ibrahim
    Nyborg, Lars
    [J]. SIMULATION MODELLING PRACTICE AND THEORY, 2016, 60 : 40 - 53
  • [6] INVERSE SOLUTION OF SOIL-WATER TRANSPORT MODEL PARAMETERS USING RESPONSE SURFACE METHODOLOGY
    Saha, R.
    Upadhyaya, S. K.
    Wallender, W. W.
    Slaughter, D. C.
    [J]. TRANSACTIONS OF THE ASABE, 2010, 53 (04) : 1137 - 1145
  • [7] Damage Identification Using Response Surface Methodology
    Fang, Sheng-En
    Perera, Ricardo
    [J]. DAMAGE ASSESSMENT OF STRUCTURES VIII, 2009, 413-414 : 669 - 676
  • [8] Identification of GTN model parameters by application of response surface methodology
    Abbasi, M.
    Ketabchi, M.
    Izadkhah, H.
    Fatmehsaria, D. H.
    Aghbash, A. N.
    [J]. 11TH INTERNATIONAL CONFERENCE ON THE MECHANICAL BEHAVIOR OF MATERIALS (ICM11), 2011, 10
  • [9] OPTIMIZATION OF SANDING PARAMETERS USING RESPONSE SURFACE METHODOLOGY
    Hazir, Ender
    Koc, Kucuk Huseyin
    Hiziroglu, Salim
    [J]. MADERAS-CIENCIA Y TECNOLOGIA, 2017, 19 (04): : 407 - 416
  • [10] Identification of dominant parameters for stripping potential in warm mix asphalt using response surface methodology
    A. Khodaii
    E. S. Mousavi
    M. Khedmati
    A. Iranitalab
    [J]. Materials and Structures, 2016, 49 : 2425 - 2437