bireprob: An estimator for bivariate random-effects probit models

被引:10
|
作者
Plum, Alexander [1 ]
机构
[1] Univ Magdeburg, Chair Publ Econ, D-39106 Magdeburg, Germany
来源
STATA JOURNAL | 2016年 / 16卷 / 01期
关键词
st0426; bireprob; bivariate random-effects probit; maximum simulated likelihood; Halton draws; LOGIT-MODELS; UNEMPLOYMENT; POVERTY;
D O I
10.1177/1536867X1601600111
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
I present the bireprob command, which fits a bivariate random-effects probit model. bireprob enables a researcher to estimate two (seemingly unrelated) nonlinear processes and to control for interrelations between their unobservables. The estimator uses quasirandom numbers (Halton draws) and maximum simulated likelihood to estimate the correlation between the error terms of both processes. The application of bireprob is illustrated in two examples: the first one uses artificial data, and the second one uses real data. Finally, in a simulation, the performance of the estimator is tested and compared with the official Stata command xtprobit.
引用
收藏
页码:96 / 111
页数:16
相关论文
共 50 条
  • [1] APPLICATION OF RANDOM-EFFECTS PROBIT REGRESSION-MODELS
    GIBBONS, RD
    HEDEKER, D
    [J]. JOURNAL OF CONSULTING AND CLINICAL PSYCHOLOGY, 1994, 62 (02) : 285 - 296
  • [2] Simulated multivariate random-effects probit models for unbalanced panels
    Plum, Alexander
    [J]. STATA JOURNAL, 2014, 14 (02): : 259 - 279
  • [3] A novel estimator of between-study variance in random-effects models
    Wang, Nan
    Zhang, Jun
    Xu, Li
    Qi, Jing
    Liu, Beibei
    Tang, Yiyang
    Jiang, Yinan
    Cheng, Liang
    Jiang, Qinghua
    Yin, Xunbo
    Jin, Shuilin
    [J]. BMC GENOMICS, 2020, 21 (01)
  • [4] A novel estimator of between-study variance in random-effects models
    Nan Wang
    Jun Zhang
    Li Xu
    Jing Qi
    Beibei Liu
    Yiyang Tang
    Yinan Jiang
    Liang Cheng
    Qinghua Jiang
    Xunbo Yin
    Shuilin Jin
    [J]. BMC Genomics, 21
  • [5] Insights on Crash Injury Severity Control from Novice and Experienced Drivers: A Bivariate Random-Effects Probit Analysis
    Xiao, Daiquan
    Yuan, Quan
    Kang, Shengyang
    Xu, Xuecai
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [6] Maximum simulated likelihood estimation of random-effects dynamic probit models with autocorrelated errors
    Stewart, Mark
    [J]. STATA JOURNAL, 2006, 6 (02): : 256 - 272
  • [7] A RANDOM-EFFECTS PROBIT MODEL FOR PREDICTING MEDICAL MALPRACTICE CLAIMS
    GIBBONS, RD
    HEDEKER, D
    CHARLES, SC
    FRISCH, P
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (427) : 760 - 767
  • [8] A Bayesian multivariate probit for ordinal data with semiparametric random-effects
    Kim, Jung Seek
    Ratchford, Brian T.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 64 : 192 - 208
  • [9] ERRORS IN VARIABLES IN A RANDOM-EFFECTS PROBIT MODEL FOR PANEL DATA
    KAO, C
    SCHNELL, JF
    [J]. ECONOMICS LETTERS, 1987, 24 (04) : 339 - 342
  • [10] Child Restraint Use and Seating Position of Child Passengers in Motor Vehicles and Their Correlations: Application of a Random-Effects Bivariate Probit Model
    Chakraborty, Meghna
    Mahmud, Md Shakir
    Gates, Timothy J.
    [J]. TRANSPORTATION RESEARCH RECORD, 2022, 2676 (12) : 267 - 279