A practical subspace blind identification algorithm with reduced computational complexity

被引:0
|
作者
Tanabe, N [1 ]
Furukawa, T
Sakaniwa, K
Tsujii, S
机构
[1] Tokyo Inst Technol, Dept Commun & Integrated Syst, Tokyo 1528552, Japan
[2] Tokyo Univ Sci, Dept Management Sci, Tokyo 1620825, Japan
[3] Inst Informat Secur, Grad Sch Informat Secur, Yokohama, Kanagawa 2210835, Japan
关键词
principal component analysis; autocorrelation; subspace method; eigenvalue and singular-value decomposition; computational complexity; channel order; noise variance;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a practical blind channel identification algorithm based on the principal component analysis. The algorithm estimates (1) the channel order, (2) the noise variance, and then identifies (3) the channel impulse response, from the autocorrelation of the channel output signal without using the eigenvalue and singular-value decomposition. The special features of the proposed algorithm are (1) practical method to find the channel order and (2) reduction of computational complexity. Numerical examples show the effectiveness of the proposed algorithm.
引用
收藏
页码:3360 / 3371
页数:12
相关论文
共 50 条
  • [1] A subspace blind identification algorithm based on CGM with reduced computational complexity
    Tanabe, Nari
    Aoki, Ken
    Furukawa, Toshihiro
    Matsue, Hideaki
    Tsujii, Shigeo
    TENCON 2007 - 2007 IEEE REGION 10 CONFERENCE, VOLS 1-3, 2007, : 224 - +
  • [2] A subspace blind identification algorithm with reduced computational complexity - Colored noise case
    Tanabe, N
    Furukawa, T
    Sakaniwa, K
    Tsujii, S
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2005, E88A (07): : 2015 - 2018
  • [3] Reduced complexity null subspace channel impulse response based blind identification
    Maoudj, Rabah
    Medeiros, Juan
    Terre, Michel
    Christophe, Alexandre
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2020, 115
  • [4] A Quadratic Complexity Subspace Algorithm for Blind Channel Shortening
    Gazzah, Houcem
    2013 FIRST INTERNATIONAL CONFERENCE ON COMMUNICATIONS SIGNAL PROCESSING, AND THEIR APPLICATIONS (ICCSPA'13), 2013,
  • [5] Subspace algorithm for certain blind identification problems
    Univ of Melbourne, Parkville
    IEEE Trans Inf Theory, 2 (499-511):
  • [6] A subspace based blind identification and equalization algorithm
    Sampath, B
    Li, Y
    Liu, KJR
    1996 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS - CONVERGING TECHNOLOGIES FOR TOMORROW'S APPLICATIONS, VOLS. 1-3, 1996, : 1010 - 1014
  • [7] A subspace algorithm for certain blind identification problems
    AbedMeraim, K
    Loubaton, P
    Moulines, E
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (02) : 499 - 511
  • [8] A low-complexity adaptive blind subspace channel estimation algorithm
    Kang, W
    Champagne, B
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL IV, PROCEEDINGS: SIGNAL PROCESSING FOR COMMUNICATIONS SPECIAL SESSIONS, 2003, : 321 - 324
  • [9] Minimising Computational Complexity of the RRT Algorithm A Practical Approach
    Svenstrup, Mikael
    Bak, Thomas
    Andersen, Hans Jorgen
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011,
  • [10] A minimum interference routing algorithm with reduced computational complexity
    Figueiredo, Gustavo B.
    da Fonseca, Nelson L. S.
    Monteiro, Jose A. S.
    COMPUTER NETWORKS, 2006, 50 (11) : 1710 - 1732