Spatial-Temporal Clustering of Neural Data Using Linked-Mixtures of Hidden Markov Models

被引:2
|
作者
Darmanjian, Shalom [1 ]
Principe, Jose [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Markov Model; Synthetic Data; Neural Model; Publisher Note; Disable Patient;
D O I
10.1155/2009/892461
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper builds upon the previous Brain Machine Interface (BMI) signal processing models that require apriori knowledge about the patient's arm kinematics. Specifically, we propose an unsupervised hierarchical clustering model that attempts to discover both the interdependencies between neural channels and the self-organized clusters represented in the spatial-temporal neural data. Results from both synthetic data generated with a realistic neural model and real BMI data are used to quantify the performance of the proposed methodology. Since BMIs must work with disabled patients who lack arm kinematic information, the clustering work described within this paper is relevant for future BMIs. Copyright (C) 2009 S. Darmanjian and J. Principe.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Spatial-Temporal Clustering of Neural Data Using Linked-Mixtures of Hidden Markov Models
    Shalom Darmanjian
    Jose Principe
    [J]. EURASIP Journal on Advances in Signal Processing, 2009
  • [2] HIERARCHICAL CLUSTERING OF NEURAL DATA USING LINKED-MIXTURES OF HIDDEN MARKOV MODELS FOR BRAIN MACHINE INTERFACES
    Darmanjian, Shalom
    Principe, Jose
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3505 - 3508
  • [3] Weld Bead Localization via Spatial-Temporal Hidden Markov Models
    Xue, Tong
    Liu, Yong
    [J]. 2016 INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY, ENVIRONMENT AND INFORMATION ENGINEERING (SEEIE 2016), 2016, : 301 - 306
  • [4] Bayesian mixtures of Hidden Tree Markov Models for structured data clustering
    Bacciu, Davide
    Castellana, Daniele
    [J]. NEUROCOMPUTING, 2019, 342 : 49 - 59
  • [5] Clustering Vehicle Maneuver Trajectories Using Mixtures of Hidden Markov Models
    Martinsson, John
    Mohammadiha, Nasser
    Schliep, Alexander
    [J]. 2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 3698 - 3705
  • [6] HIDDEN MARKOV RANDOM FIELD FOR SPATIAL AND SPATIAL-TEMPORAL RISK MAPPING
    Azizi, L.
    Forbes, F.
    Charras-Garrido, M.
    Abrial, D.
    [J]. JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH, 2011, 65 : A90 - A90
  • [7] Modeling spatial-temporal binary data using Markov random fields
    Jun Zhu
    Hsin-Cheng Huang
    Jungpin Wu
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2005, 10 : 212 - 225
  • [8] HMMGEP: clustering gene expression data using hidden Markov models
    Ji, XL
    Yuan, Y
    Li, YD
    Sun, ZR
    [J]. BIOINFORMATICS, 2004, 20 (11) : 1799 - 1800
  • [9] Temporal and spatial data mining with second-order hidden markov models
    J.-F. Mari
    F. Le Ber
    [J]. Soft Computing, 2006, 10 : 406 - 414
  • [10] Temporal and spatial data mining with second-order hidden markov models
    Mari, JF
    Le Ber, F
    [J]. SOFT COMPUTING, 2006, 10 (05) : 406 - 414