Accelerating the discovery of novel magnetic materials using machine learning-guided adaptive feedback

被引:13
|
作者
Xia, Weiyi [1 ,2 ]
Sakurai, Masahiro [3 ,4 ]
Balasubramanian, Balamurugan [5 ,6 ]
Liao, Timothy [3 ,7 ]
Wang, Renhai [1 ,8 ]
Zhang, Chao [9 ]
Sun, Huaijun [10 ]
Ho, Kai-Ming [1 ]
Chelikowsky, James R. [3 ,7 ,11 ]
Sellmyer, David J. [5 ,6 ]
Wang, Cai-Zhuang [1 ,2 ]
机构
[1] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[2] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA
[3] Univ Texas Austin, Oden Inst Computat Engn & Sci, Ctr Computat Mat, Austin, TX 78712 USA
[4] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[5] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA
[6] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
[7] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[8] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Peoples R China
[9] Yantai Univ, Dept Phys, Yantai 264005, Peoples R China
[10] Zhejiang Agr & Forestry Univ, Dept Phys, Zhuji 311800, Peoples R China
[11] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
基金
中国国家自然科学基金;
关键词
magnetic materials; materials discovery; machine learning; methodology development; TOTAL-ENERGY CALCULATIONS; EFFECTIVE POTENTIALS; HYDROGEN; DRIVEN;
D O I
10.1073/pnas.2204485119
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic materials are essential for energy generation and information devices, and they play an important role in advanced technologies and green energy economies. Currently, the most widely used magnets contain rare earth (RE) elements. An outstanding challenge of notable scientific interest is the discovery and synthesis of novel magnetic materials without RE elements that meet the performance and cost goals for advanced electromagnetic devices. Here, we report our discovery and synthesis of an RE-free magnetic compound, Fe3CoB2, through an efficient feedback framework by integrating machine learning (ML), an adaptive genetic algorithm, first-principles calculations, and experimental synthesis. Magnetic measurements show that Fe3CoB2 exhibits a high magnetic anisotropy (K-1 = 1.2 MJ/m(3)) and saturation magnetic polarization ( J(s) = 1.39 T), which is suitable for RE-free permanent-magnet applications. Our ML-guided approach presents a promising paradigm for efficient materials design and discovery and can also be applied to the search for other functional materials.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Accelerating materials discovery using machine learning
    Juan, Yongfei
    Dai, Yongbing
    Yang, Yang
    Zhang, Jiao
    [J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 79 : 178 - 190
  • [2] Accelerating materials discovery using machine learning
    Yongfei Juan
    Yongbing Dai
    Yang Yang
    Jiao Zhang
    [J]. Journal of Materials Science & Technology, 2021, 79 (20) : 178 - 190
  • [3] Machine learning-guided synthesis of advanced inorganic materials
    Tang, Bijun
    Lu, Yuhao
    Zhou, Jiadong
    Chouhan, Tushar
    Wang, Han
    Golani, Prafful
    Xu, Manzhang
    Xu, Quan
    Guan, Cuntai
    Liu, Zheng
    [J]. MATERIALS TODAY, 2020, 41 : 72 - 80
  • [4] A review on machine learning-guided design of energy materials
    Kim, Seongmin
    Xu, Jiaxin
    Shang, Wenjie
    Xu, Zhihao
    Lee, Eungkyu
    Luo, Tengfei
    [J]. PROGRESS IN ENERGY, 2024, 6 (04):
  • [5] Machine learning-guided discovery and design of non-hemolytic peptides
    Plisson, Fabien
    Ramirez-Sanchez, Obed
    Martinez-Hernandez, Cristina
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [6] Machine Learning-Guided Discovery of AcrB and MexB Efflux Pump Inhibitors
    Bera, Abhishek
    Roy, Rakesh Kumar
    Joshi, Pritish
    Patra, Niladri
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2024, 128 (03): : 648 - 663
  • [7] Machine learning-guided discovery and design of non-hemolytic peptides
    Fabien Plisson
    Obed Ramírez-Sánchez
    Cristina Martínez-Hernández
    [J]. Scientific Reports, 10
  • [8] Accelerating materials discovery using integrated deep machine learning approaches
    Xia, Weiyi
    Tang, Ling
    Sun, Huaijun
    Zhang, Chao
    Ho, Kai-Ming
    Viswanathan, Gayatri
    Kovnir, Kirill
    Wang, Cai-Zhuang
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (47) : 25973 - 25982
  • [9] Accelerating materials discovery using integrated deep machine learning approaches
    Xia, Weiyi
    Tang, Ling
    Sun, Huaijun
    Zhang, Chao
    Ho, Kai-Ming
    Viswanathan, Gayatri
    Kovnir, Kirill
    Wang, Cai-Zhuang
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2023,
  • [10] Machine Learning-Guided Protein Engineering
    Kouba, Petr
    Kohout, Pavel
    Haddadi, Faraneh
    Bushuiev, Anton
    Samusevich, Raman
    Sedlar, Jiri
    Damborsky, Jiri
    Pluskal, Tomas
    Sivic, Josef
    Mazurenko, Stanislav
    [J]. ACS CATALYSIS, 2023, 13 (21) : 13863 - 13895