Experimental verification of a membrane humidifier model based on the effectiveness method

被引:47
|
作者
Kadylak, David [1 ]
Merida, Walter [1 ,2 ]
机构
[1] Univ British Columbia, Clean Energy Res Ctr, Vancouver, BC V6T 1Z4, Canada
[2] Inst Fuel Cell Innovat, Vancouver, BC V6T 1W5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Humidifier; Membrane; Fuel cell; Effectiveness; Moisture transfer; Model verification; PERFLUOROSULFONIC ACID MEMBRANES; POLYMER ELECTROLYTE MEMBRANE; WATER SORPTION; FUEL-CELLS; NAFION; TRANSPORT; VAPOR; TEMPERATURE;
D O I
10.1016/j.jpowsour.2009.12.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Experiments conducted on a commercial fuel cell humidifier determined that the water recovery ratio is the best performance metric because it considers the water supplied to the humidifier. Data from a porous polymer membrane with a hydrophilic additive were analyzed under a heat and mass transfer model. The membrane showed low water uptake profiles at relative humidities below 80 percent, and a steep increase in water uptake above threshold. The experiments were conducted with samples of the porous membrane in a single cell humidifier at isothermal conditions at temperatures of 25, 50, and 75 degrees C. The water recovery ratio for the porous membrane decreased with increasing flow rate. The model was verified experimentally and its predictions agreed with the measured data. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3166 / 3175
页数:10
相关论文
共 50 条
  • [1] An experimental study and model validation of a membrane humidifier for PEM fuel cell humidification control
    Chen, Dongmei
    Li, Wei
    Peng, Huei
    JOURNAL OF POWER SOURCES, 2008, 180 (01) : 461 - 467
  • [2] Model and experimental validation of a controllable membrane-type humidifier for fuel cell applications
    McKay, Denise A.
    Stefanopoulou, Anna G.
    Cook, Jeffrey
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 312 - 317
  • [3] Experimental verification of a model based decomposition method for Double Dipole Lithography
    Eurlings, M
    Hsu, S
    Hendrickx, E
    Root, WO
    Laidig, T
    Chiou, T
    Chen, A
    Chen, F
    Vandenberghe, G
    Finders, J
    OPTICAL MICROLITHOGRAPHY XVII, PTS 1-3, 2004, 5377 : 1225 - 1236
  • [4] EXPERIMENTAL-VERIFICATION OF A RESPONSE MODEL OF A MEMBRANE IMMUNOELECTRODE
    KUROCHKIN, VE
    RAEVSKII, KK
    TEROVSKII, VB
    JOURNAL OF ANALYTICAL CHEMISTRY, 1993, 48 (04) : 479 - 485
  • [5] Experimental Verification of a Mathematical Model of Emulsion Liquid Membrane
    Fan, Huifang
    Xie, Hui
    Ma, Fei
    Yu, Jie
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [6] Evaluation of the effectiveness-NTU method for countercurrent humidifier
    Xie, Yingchun
    Xu, Zhen
    Mei, Ning
    APPLIED THERMAL ENGINEERING, 2016, 99 : 1270 - 1276
  • [7] A dispersion-based impact identification method: mechanical model and experimental verification
    Liu, Zishang
    Chen, Tianyu
    Zhang, Kun
    Wei, Yanpeng
    Guo, Yacong
    Wei, Bingchen
    ACTA MECHANICA SINICA, 2024, 40 (07)
  • [8] A Lumped-Mass Model of Membrane Humidifier for PEMFC
    Hoang Nghia Vu
    Xuan Linh Nguyen
    Yu, Sangseok
    ENERGIES, 2022, 15 (06)
  • [9] Comprehensive investigation of membrane sorption and CFD modeling of a tube membrane humidifier with experimental validation
    Schmitz, M.
    Welker, F.
    Tinz, S.
    Bahr, M.
    Goessling, S.
    Kaimer, S.
    Pischinger, S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (23) : 8596 - 8612
  • [10] An analytical model of Nafion™ membrane humidifier for proton exchange membrane fuel cells
    Park, Sehkyu
    Oh, In-Hwan
    JOURNAL OF POWER SOURCES, 2009, 188 (02) : 498 - 501