Elliptically symmetric distributions;
Stein-Haff type identity;
SURE estimators;
DECOMPOSITION;
D O I:
10.1016/j.jmva.2017.03.008
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This paper is concerned with additive models of the form Y = M + epsilon, where Y is an observed n x m matrix with m < n, M is an unknown n x m matrix of interest with low rank, and epsilon is a random noise whose distribution is elliptically symmetric. For general estimators <(M)over cap> of M, we develop unbiased risk estimates, including in the special case where epsilon is Gaussian with covariance matrix proportional to the identity matrix. To this end, we develop a new Stein-Haff type identity. We apply the theory to a model selection framework with estimators defined through a soft-thresholding function. We establish the robustness of our approach within a large subclass of elliptical distributions. (C) 2017 Elsevier Inc. All rights reserved.
机构:
Univ Pretoria, Dept Stat, Fac Nat & Agr Sci, Pretoria, South AfricaUniv Pretoria, Dept Stat, Fac Nat & Agr Sci, Pretoria, South Africa
van Niekerk, Janet
Bekker, Andriette
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pretoria, Dept Stat, Fac Nat & Agr Sci, Pretoria, South AfricaUniv Pretoria, Dept Stat, Fac Nat & Agr Sci, Pretoria, South Africa
Bekker, Andriette
Arashi, Mohammad
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pretoria, Dept Stat, Fac Nat & Agr Sci, Pretoria, South Africa
Univ Shahrood, Dept Stat, Sch Math Sci, Shahrood, IranUniv Pretoria, Dept Stat, Fac Nat & Agr Sci, Pretoria, South Africa
Arashi, Mohammad
de Waal, Daan J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pretoria, Dept Stat, Fac Nat & Agr Sci, Pretoria, South Africa
Univ Free State, Dept Math Stat & Actuarial Sci, Fac Nat & Agr Sci, Bloemfontein, South AfricaUniv Pretoria, Dept Stat, Fac Nat & Agr Sci, Pretoria, South Africa