Mapping interacting QTL for count phenotypes using hierarchical Poisson and binomial models: an application to reproductive traits in mice

被引:1
|
作者
Li, Jun [1 ]
Reynolds, Richard [1 ]
Pomp, Daniel [3 ,4 ,5 ]
Allison, David B. [1 ,2 ]
Yi, Nengjun [1 ,2 ]
机构
[1] Univ Alabama Birmingham, Dept Biostat, Sect Stat Genet, Birmingham, AL 35294 USA
[2] Univ Alabama Birmingham, Clin Nutr Res Ctr, Birmingham, AL 35294 USA
[3] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Dept Nutr, Chapel Hill, NC 27599 USA
[5] Univ N Carolina, Dept Cell & Mol Physiol, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
LARGE-SAMPLE QTL; OVULATION RATE; COMPLEX TRAITS; LITTER SIZE; GENOME SCAN; LOCI; EPISTASIS; IDENTIFICATION; NUMBER; RICE;
D O I
10.1017/S0016672310000029
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We proposed hierarchical Poisson and binomial models for mapping multiple interacting quantitative trait loci (QTLs) for count traits in experimental crosses. We applied our methods to two counted reproductive traits, live fetuses (LT) and dead fetuses (DE) at 17 days gestation, in an F-2 female mouse population. We treated observed number of corpora lutea (ovulation rate) as the baseline and the total trials in our Poisson and binomial models, respectively. We detected more than 10 QTLs for LF and DF, most having epistatic and pleiotropic effects. The epistatic effects were larger, involved more QTLs, and explained a larger proportion of phenotypic variance than the main effects. Our analyses revealed a complex network of multiple interacting QTLs for the reproductive traits, and increase our understanding of the genetic architecture of reproductive characters. The proposed statistical models and methods provide valuable tools for detecting multiple interacting QTLs for complex count phenotypes.
引用
收藏
页码:13 / 23
页数:11
相关论文
共 7 条