On existence of oscillatory solutions of second order Emden-Fowler equations

被引:13
|
作者
Ou, CH [1 ]
Wong, JSW [1 ]
机构
[1] City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
oscillation; nonlinear; second order; ordinary differential equation;
D O I
10.1016/S0022-247X(02)00617-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the second order Emden-Fowler equation y"(t) + a (x)\y\(gamma) sgn = 0, gamma > 0, where a(x) is a positive and absolutely continuous function on (0, infinity). Let phi(x) = a(x)x((gamma+3)/2), y not equal 1, and bounded away from zero. We prove the following theorem. If phi'_(x) is an element of L-1 (0, infinity) where phi'_(x) = - min(phi'(x), 0), then Eq. (E) has oscillatory solutions. In particular, this result embodies earlier results by Jasny, Kurzweil, Heidel and Hinton, Chiou, and Erbe and Muldowney. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:670 / 680
页数:11
相关论文
共 50 条