Rainbow Connection Number of Rocket Graphs

被引:3
|
作者
Susilawati [1 ]
Salman, A. N. M. [1 ]
机构
[1] Inst Teknol Bandung, Combinatorial Math Res Grp, Jalan Ganesa 10, Bandung 40132, Indonesia
关键词
D O I
10.1063/1.4930634
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
All graphs in this paper are simple, unite, and undirected. The concept of rainbow coloring was introduced by Chartrand et al`. Let G be a non trivial connected graph. Fork E N, we define a coloring r: E(G) -> (1,2...,k) of the edges of G such that the adjacent can be colored the same. A path P in G is a rainbow path if no two edges of P are colored the same. A path connecting two vertices u and v in G is called u v path. A graph G is said rainbow -connected if for every two vertices u and v of G, there exist a rainbow u v path. In this case, the coloring c is called the rainbow k -coloring of G. The minimum k such that G has rainbow k -coloring is called the rainbow connection number of G. Clearly that dium(G) <= rc(G) where diam(G) denotes the diameter of G. in this paper we determine the rainbow connection number of rocket graphs.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] On the rainbow connection number of graphs
    Dror, G.
    Lev, A.
    Roditty, Y.
    Zigdon, R.
    ARS COMBINATORIA, 2017, 133 : 51 - 67
  • [2] PROPER RAINBOW CONNECTION NUMBER OF GRAPHS
    Trung Duy Doan
    Schiermeyer, Ingo
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (03) : 809 - 826
  • [3] RAINBOW CONNECTION NUMBER OF DENSE GRAPHS
    Li, Xueliang
    Liu, Mengmeng
    Schiermeyer, Ingo
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (03) : 603 - 611
  • [4] The Rainbow Connection Number of Origami Graphs and Pizza Graphs
    Nabila, S.
    Salman, A. N. M.
    2ND INTERNATIONAL CONFERENCE OF GRAPH THEORY AND INFORMATION SECURITY, 2015, 74 : 162 - 167
  • [5] The Rainbow Connection Number of Origami Graphs and Pizza Graphs
    Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung
    40132, Indonesia
    Procedia Comput. Sci., (162-167):
  • [6] Graphs with small total rainbow connection number
    Yingbin Ma
    Lily Chen
    Hengzhe Li
    Frontiers of Mathematics in China, 2017, 12 : 921 - 936
  • [7] Graphs with vertex rainbow connection number two
    ZaiPing Lu
    YingBin Ma
    Science China Mathematics, 2015, 58 : 1803 - 1810
  • [8] RAINBOW CONNECTION NUMBER OF GRAPHS WITH DIAMETER 3
    Li, Hengzhe
    Li, Xueliang
    Sun, Yuefang
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (01) : 141 - 154
  • [9] Graphs with vertex rainbow connection number two
    Lu ZaiPing
    Ma YingBin
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (08) : 1803 - 1810
  • [10] The Rainbow (Vertex) Connection Number of Pencil Graphs
    Simamora, Dian N. S.
    Salman, A. N. M.
    2ND INTERNATIONAL CONFERENCE OF GRAPH THEORY AND INFORMATION SECURITY, 2015, 74 : 138 - 142