Neural network updating via argument Kalman filter for modeling of Takagi-Sugeno fuzzy models

被引:57
|
作者
de Jesus Rubio, Jose [1 ]
Lughofer, Edwin [2 ]
Meda-Campana, Jesus A. [3 ]
Alberto Paramo, Luis [3 ]
Francisco Novoa, Juan [3 ]
Pacheco, Jaime [1 ]
机构
[1] Inst Politecn Nacl, ESIME Azcapotzalco, Secc Estudios Posgrado & Invest, Av Granjas 682, Mexico City 02250, DF, Mexico
[2] Johannes Kepler Univ Linz, Dept Knowledge Based Math Syst, Linz, Austria
[3] Inst Politecn Nacl, ESIME Zacatenco, Lab Vibrac & Rotodinam, Mexico City, DF, Mexico
关键词
Argument Kalman filter; modeling; fuzzy models; DATA STREAMS; FEEDFORWARD;
D O I
10.3233/JIFS-18425
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, an argument Kalman filter is exposed for the fast updating of a neural network. The argument Kalman filter is developed based on the extended Kalman filter, but the recommended scheme has the next two advantages: first, it has less computational complexity because it only employs the Jacobian argument instead of the full Jacobian, second, its gain is ensured to be uniformly stable based on the Lyapunov approach. The commented scheme is applied for the modeling of two Takagi-Sugeno fuzzy models.
引用
收藏
页码:2585 / 2596
页数:12
相关论文
共 50 条
  • [1] The compact fuzzy filter design via Takagi-Sugeno fuzzy models
    Yu, Fang-Ming
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (03) : 4412 - 4416
  • [2] Nonlinear system identification based on Takagi-Sugeno fuzzy modeling and unscented Kalman filter
    Vafamand, Navid
    Arefi, Mohammad Mehdi
    Khayatian, Alireza
    [J]. ISA TRANSACTIONS, 2018, 74 : 134 - 143
  • [3] Sensitivity analysis of Takagi-Sugeno fuzzy neural network
    Wang, Jian
    Chang, Qin
    Gao, Tao
    Zhang, Kai
    Pal, Nikhil R.
    [J]. INFORMATION SCIENCES, 2022, 582 (725-749) : 725 - 749
  • [4] Dissipative Filter Design for Takagi-Sugeno Fuzzy Neural Networks
    Lee, Kyu-Chul
    Choi, Hyun-Duk
    Kim, Dae-Ki
    Ahn, Choon-Ki
    Lim, Myo-Taeg
    [J]. 2015 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2015, : 181 - 185
  • [5] Extended Kalman filter and Takagi-Sugeno fuzzy observer for a strip winding system
    Szedlak-Stinean, Alexandra-Iulia
    Precup, Radu-Emil
    Petriu, Emil M.
    Roman, Raul-Cristian
    Hedrea, Elena-Lorena
    Bojan-Dragos, Claudia-Adina
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 208
  • [6] Modeling Driver Behavior at Intersections with Takagi-Sugeno Fuzzy Models
    Ramyar, Saina
    Sefidmazgi, Mohammad Gorji
    Amsalu, Seifmichael
    Anzagira, Allan
    Homaifar, Abdollah
    Karimoddini, Ali
    Kurt, Arda
    [J]. 2015 IEEE 18TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, 2015, : 2378 - 2383
  • [7] Discrete-time Kalman filter for Takagi–Sugeno fuzzy models
    Páramo-Carranza L.A.
    Meda-Campaña J.A.
    de Jesús Rubio J.
    Tapia-Herrera R.
    Curtidor-López A.V.
    Grande-Meza A.
    Cázares-Ramírez I.
    [J]. Evolving Systems, 2017, 8 (03) : 211 - 219
  • [8] Duhem Hysteresis Modeling of Magnetic Shape Memory Alloy Actuator via Takagi-Sugeno Fuzzy Neural Network
    Zhang, Chen
    Yu, Yewei
    Xu, Jingwen
    Han, Zhiwu
    Zhou, Miaolei
    [J]. 2020 IEEE 15TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEM (IEEE NEMS 2020), 2020, : 77 - 82
  • [9] A fuzzy output regulator for Takagi-Sugeno fuzzy models
    Castillo-Toledo, B
    Meda-Campaña, JA
    Titli, A
    [J]. PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 2003, : 310 - 315
  • [10] Takagi-Sugeno Fuzzy Observer and Extended-Kalman Filter for Adaptive Payload Estimation
    Beyhan, Selami
    Lendek, Zsofia
    Alci, Musa
    Babuska, Robert
    [J]. 2013 9TH ASIAN CONTROL CONFERENCE (ASCC), 2013,